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CHAPTER 1
First-Order Differential Equations
Section 1.1
        This first section is simply to introduce you to differential equations: what they look like, some 
ideas as to how they arise in applications, and some important definitions.  We see that the complete 
problem might be not just the differential equation, but also one or more "initial conditions."  If such 
conditions are prescribed, the problem is called an initial value problem, or IVP.  For instance, (6) 
[that is, equation (6) in the text] is an IVP because in addition to the DE (differential equation) there 
are two initial conditions, given by (6b), so that the solution of the IVP must satisfy not only the DE 
(6a), but also those two initial conditions.  
        Chapter 1 is about first-order equations; that is, equations in which the highest derivative is of 
first order.  In that case, hence all through Chapter 1, there will be only one initial condition.  In later 
chapters we will find that the "appropriate" number of initial conditions for a DE is the same as the 
order of the equation.  For instance, (6a) is of second order and, sure enough, there are two initial 
conditions in (6b).
        The distinction between linear and nonlinear differential equations will be of great importance, 
so it is necessary to be able to tell if a given equation is linear or nonlinear.  Later, we will find that 
the key is whether or not a certain linearity property is satisfied, but for now it will suffice not to 
know about that property, but simply to say that an nth-order equation is linear if it is in, or can be put
into, the form (14).   What is the form of (14)?   First, put all occurrences of the unknown, that is, the 
dependent variable such as y in (14), on the LHS (left-hand side of the equation); anything else goes 
on the right.  If the LHS is a linear combination of  then the DE is linear.  Actually, the 
"constants" that multiply   in (14) are permitted to be functions of x; the point is that they 
don't depend on  or its derivatives.

EXAMPLES

Example 1.  (Definitions)  State the order of the 

  , 

whether it is linear or nonlinear, homogeneous or nonhomogeneous, and determine whether or not the
given functions are solutions, that is, whether or not they "satisfy" the DE:  

SOLUTION.  The equation is of second order because the highest derivative present is of second 
order; it is linear because it is of the form (14), with and 

 and it is nonhomogeneous because the RHS, , is not zero.  The RHS does happen to
be 0 at , but the equation is nonhomogeneous because the RHS is not identically zero on the 



(3)(3)

(1)(1)

(2)(2)

interval under consideration.  [Actually,we did not specify an x interval.  The default interval is  
.  Getting back to this example, surely  is not identically zero on ]   

        Now test  to see if it is a solution of the DE.  Simply substitute it into the equation and 
see if the equation is thereby reduced to an identity, such as   Inserting 

, gives  = , or    Surely, the latter is not
identically true.  How do we know that?  Hopefully, we can just look at it and see that there is "no 
way" a quadratic in  times an exponential function of  can equal a multiple of a power of .  At the 
least we can use "brute force" and check the values of the LHS and RHS at one or more 's.  For 
instance, a convenient point to use is , and there the LHS is  whereas the RHS is 0.  Thus, 

 is not a solution of the DE.

        Now test    This time, putting the latter into the DE gives, after some 

canceling of terms, , which is an identity.  Thus,  is indeed a solution of the DE.
        Now suppose we append to the DE these initial conditions at   

does satisfy these conditions, so it is a solution of the IVP consisting of the DE and the two 
given initial conditions.  If the initial conditions were and , say, instead, then  
would not be a solution of the IVP, because although it satisfies the first initial condition, it does not 
satisfy the second. 
        Let's also bring Maple usage along, as we proceed.  Here, let's use it to see if  and  are 
solutions of ("satisfy") the DE.
MAPLE:

# (The # permits us to enter a "comment".)  The foregoing line simply defines the function .

The latter is not equal to , so  is not a solution of the DE.  Now try .

Thus,  is a solution.

Example 2.  (Is it a solution?)  Is  , in which  is any constant, a solution 

of the DE
?

SOLUTION.  It is not surprising to find integrals within solutions to DEs; after all, integration is the 
inverse operation of the differentiations present in the DE.  In most cases that occur in this book, such



integrals can be evaluated in terms of the familiar elementary functions, but this integral cannot.  
Actually, it can be evaluated in terms of "nonelementary" functions, but let's not get into that; let's 
just leave it as it is.  To see if the given  is a solution, differentiate it to obtain :

,

and if we put that, and  into the DE we obtain

,

which is seen, after cancelations, to be an identity.  Thus, the given  is indeed a solution, for any 
value of the constant A.  Of course, we could have used Maple, as we did in Example 1.
NOTE:  To differentiate we used chain differentiation:  

with  , and  .  And to differentiate the integral we used the calculus formula

Example 3.  (Classification)  Classify the DE 

                                               .   

SOLUTION.  It is a linear second-order equation because it can be re-arranged as
,  or  .  That is, it is of the form (14), with n = 2, 

, and   And it is nonhomogeneous because  is not identically 
zero.

Example 4.  Is the DE

  

linear or nonlinear?
SOLUTION.  It is nonlinear, because when we try to rearrange it in the form (14) the best we can do 
is  .  The presence of the product    makes the equation nonlinear.

Example 5.  (Seeking exponential solutions)  A powerful and simple solution method that we will 
develop is that of seeking a solution in a certain form.  For instance, see whether you can find any 
solutions of

in the exponential form  , in which  is a yet-to-be-determined constant.  



SOLUTION.  Just put the latter into the DE and see if any  's can be found so that  is a solution. 
That step gives .  Now,  is not zero for any values of  .  In fact, 
even if it were zero for certain values of  that wouldn't suffice, for we need substitution to reduce the 
DE to an identity, that is, for all .  Thus, we can cancel the  and obtain .  That is merely
a quadratic equation for , and it gives the two values  and   Thus, we have been successful 
in finding solutions of the DE in the assumed exponential form, namely, both   and  

.   These solutions are readily verified by substitution into the DE.
        Are these the only solutions of the DE?  If not, what are the others?  We cannot answer these 
important questions yet, but we will in Chapter 2.



Section 1.2
        As one begins with  when studying functions, the analogous starting point in solving 
differential equations is the first-order linear equation

  
in which  and  are known and  is the unknown.  We see in this section that there is 
actually an infinite number of solutions of the latter since the "general solution," the "all-
encompassing" solution, contains an arbitrary constant, usually called A (or C).  Each different choice
of A gives a solution.

EXAMPLES

Example 1. (Homogeneous equations)  Find the particular solution of the IVP

,  

and give its interval of existence. 
SOLUTION.  The DE is of the form (6), with , so its general solution is given by (8) as

  
Then, the initial condition gives  , so .  Thus, the desired solution is

  
For its interval of existence, we can use Theorem 1.2.1:   is continuous on , 
so the theorem assures us that the foregoing solution exists on   In this example we used
the off-the-shelf solution formula (8).  More generally, in working the text exercises you can use 
whatever formulas are available in the text unless the problem statement or your instructor 
asks for a specific line of approach. 

Example 2.  (This time using separation of variable to get the general solution)  Derive the 
general solution of

 , 

this time not by using the solution formula (8), but by using the method of separation of variables.  
SOLUTION.  Divide by  and , assuming that to separate the variables, then integrate:

                    

                                                                                   (A)

Now, , so  is arbitrary, but nonzero (because  is nonzero for all A).  Now 
check the possibility  that we disallowed when we divided the DE by  :  We see that  
does happen to satisfy the DE, because its substitution gives 0 = 0, so we can bring that solution 



under the umbrella of (A) by now allowing C to be zero as well.  Thus, the general solution of  
 is  , with C an arbitrary constant.

Example 3.  (Nonhomogeneous equations)  Find the general solution of the DE

.  

Then find the particular solution corresponding to the initial condition .
SOLUTION.  The simplest way to get these solutions is to use (27) and (37), respectively, but, 
instead, let's begin by using the integrating factor method to find the general solution:  Multiply the 
DE by a yet-to-be-determined function , so  ,  and require that 

, that is,  .  The latter is separable, giving  .  

Integrating (and not bothering to include an integration constant because all we need is an integrating 
factor, not the most general one), we obtain  , so .  Thus, our DE becomes   

 .  Now the coefficient of  is indeed the derivative of the coefficient of  

,  which can be solved merely by integrating.  That step gives  ,  so the 

general solution of the DE is

  ,

in which A is an arbitrary constant.  To evaluate A, apply the initial condition:  ,
which gives  .  Thus, the particular solution satisfying  is  

                                                                                                                             (A)

It is simpler to use (27) for the general solution, or (37) if we want the particular solution (but less 
helpful in achieving understanding):
General solution by (27):  First, write the DE in the standard form as  so 

  and   Then, (25) gives   and (27) gives  

,  as found above.   Having that general solution in hand, 

we can find the particular solution by applying the initial condition to that general solution, to find C. 
Instead, let's suppose we don't have the general solution, and let us get the desired particular solution 

directly from (37), with  chosen as the initial point, 2, and :  Evaluating , 
as above, then (37) gives

 

as found above.
        What is the interval of existence of the solution (A)?  It is well-behaved (that is, continuous and 
even differentiable) on the two separate intervals   and  .  Of these, we must choose 



the latter since it is the one that contains the initial point x = 2.  Thus, the interval of existence of (A) 
is  .

Example 4.  (Interchange of variables)  Solve

   

SOLUTION.  This DE cannot be put into first-order linear form (try it), so it is nonlinear.  Hence, the 
methods of this section don't apply.  However, try interchanging the roles of the independent and 
dependent variables, now letting x,y be the dependent and independent variables, respectively, so we 

seek   Setting the   equal to  ,  the DE becomes  , 

or  Then,  so the DE becomes  ,  

or    Thus,   so  .  We could write the latter as

 , then solve the latter by the quadratic formula for and then apply the initial 
condition to find A, but it is much simpler to apply the initial condition to the solution in the form  

, given above: That is, set x = 2 and y = 1, so  2 = 2 + A, so A = 0.  Thus, 

so   is the desired solution to the IVP.

Example 5.  (Direction field and straight-line solution)  (a)  Find any straight-line solutions of the 
DE

                                               

(b) Then, obtain the direction field for that DE, on the box 15.  
(c)  Obtain the direction field again, but this time including the solution curves through the initial 
points [that is, ] and   
SOLUTION.    
(a)  That is, seek   in the form    Putting the latter into the DE gives

The latter is of the form  , where   are constants.  For 
the latter to be an identity we must "match coefficients":  .  Thus,   and  , 
which give  , so we do find one straight-line solution, namely  
(b)  Using Maple, with the arrows = line option, for instance:



x
0 1 2 3 4 5 6

y(x)
5

10

15

(c)  To include solution curves we cannot use dfieldplot; instead use phaseportrait:

x
1 2 3 4 5 6

y(x)
5

10

15

Note that the initial point  gives the straight-line solution that we found in part (a).

Example 6.  (Working backwards)  If possible, find a first-order linear DE that has  and 
  among its solutions.

SOLUTION.  We'll just give a hint.  Putting each of the two given solutions into   
will give equations that can be solved for  and .

Example 7.  (Bernoulli's equation.)  Bernoulli's equation will be covered in Section 1.8.1, so it will 
be simplest to refer you to that section and to Example 1 given therein.



 

Section 1.3
        As its title indicates, this is an applications section.  The only new mathematics is the material in
Section 1.3.4 on the phase line, equilibrium points, and stability (of those equilibrium points), for 
autonomous equations.  That subsection is a prerequisite for Chapter 7, which covers the phase plane 
for systems of two autonomous differential equations.

EXAMPLES

Example 1.  (Exponential population model)  If a population governed by the exponential model 
has 4500 members after five years and 6230 after ten years, what is its growth rate?  Its initial 
population?  
SOLUTION.  , so    and     Dividing the latter two 
equations gives  ,  so the growth rate is    Putting that result into 

   gives the initial population  

Example 2.  (Exponential population model)  The world population is increasing at approximately 
1.3% per year.  If that growth rate remains constant, how many years will it take for its population to 
triple?
SOLUTION.  It follows from (3) and the problem statement that , so  
For it to triple after   years, .  Canceling  and solving gives 

 years.

Example 3.  (E. coli population)  A colony of E. coli is grown in a culture having a growth rate 
 per hour.  (From   it follows that has dimensions of 1/time.)  At the end of 5 hours 

the culture conditions are modified by increasing the nutrient concentration in the medium, such that 
the new growth rate is    per hour.  If the initial population is evaluate  that
is, after 20 hours.
SOLUTION.  For    so    Letting this
time, , be the new initial time, we obtain    as the 
population at the end of 20 hours.

Example 4.  (Radioactive decay)  (a)  A seashell contains 90% as much C-14 as a living shell of the 
same size (that is, of the same weight).  How old is it?  NOTE:  The half-life of C-14 is 5,570 years.  
(b)  How many years did it take for its C-14 content to diminish from its initial value to 99% of that 
value?
SOLUTION.  (a)  It is more convenient to use (12) than (11) because we know T in (12), but would 
first need to evaluate k in (11) (from the known half-life):    gives  , 
solution of which gives   years.
(b)    gives   years.

Example 5.  (Radioactive decay)  If 20% of a radioactive substance disappears in 70 days, what is 
its half-life?



SOLUTION.  , so  , which gives   and    Thus,  
 days.

Example 6.  (Mixing tank)  For the mixing tank shown in the text Fig.3, let the initial concentration 
be .  At time , the inflow concentration is changed from  to 0.  
(a)  Solve for ,  both for  and for   
(b)  Taking  , for simplicity, sketch the graph of .
SOLUTION.  (a)  The problem is this,    for , and    for 

  or,

 with  .

In Chapter 5 we will learn how to treat this as a single problem, using the Laplace transform, but here
we will proceed by breaking the problem into two sequential problems.  The first is  

 , with , the solution of which is 

                                                       for .                                                    (A)
Use the final value from the first time interval, as the initial value for the second time interval.  
Thus, for the second time interval the problem is  ,  with  initial condition  

  Its solution is

                                               for .                                          (B)
Don't let   confuse you; they are simply constants. 
(b)  Setting  ,  the solution is

             

The graph looks like the solid curve

t
0 1 2 3

c

0

1

Example 7.  (Phase line)  Develop the phase line for the autonomous DE  , identify any 
equilibrium points, and classify each as stable or unstable.
SOLUTION.  Sketch the graph of    versus .  It is a parabola with a minimum at  
and is zero at  which are the two equilibrium points.  Now draw the phase line, which is the 
 axis:   for , so for  the flow arrow is to the right; similarly for the flow arrow

is to the right; and for  so there the flow is to the left.  Since the flow approaches the
equilibrium point at x = 0, that equilibrium point is stable; and since the flow is away from the 



equilibrium point at x = 1, that one is unstable.

Example 8.  (Light extinction; Lambert's law)  Consider window glass subjected to light rays 
normal to its surface, and let x be a coordinate normal to that surface, with x = 0 at the incident face.  
It is found that the light intensity  in the glass is not a constant, but diminishes with x according to 

Lambert's law, which says that   .  If 80% of the light penetrates a 1-inch-thick slab of this 

glass, how thin must the glass be to let 95% penetrate?
SOLUTION.  The solution of the DE, with initial condition  , is    From the data

given,  which yields  Thus,  Then,

  gives  inches as the thickness of the slab.

Example 9.  (Cooling of coffee)  Newton's law of cooling states that a body that is hotter than its 
environment will cool at a rate that is proportional to the difference of the temperatures of the 
body, and  of the environment, so that

                                                                                                                                (A)

in which    is the constant of proportionality - which can be determined empirically.  The equation 
(A) is a linear equation  , with general solution  
                                                      ,                                                                        (B)
in which  is an arbitrary constant.  Here is the problem:  A cup of coffee in a room that is at F is 
at  F when it is poured.  After 10 minutes it has cooled to F.  
(a) How long will it take to cool to F?   
(b)  What will be its temperature three hours after it was poured?  
SOLUTION.  If we take into account that the coffee temperature is not spatially uniform within the 
cup then the problem is MUCH more difficult, so let us assume that it is indeed spatially uniform, and
hence a function only of  , which seems not such a bad assumption since the cooling process is so 
slow that the temperature within the cup has the opportunity to remain spatially equilibrated.  
(a)  Now,  so (A) becomes    Next,   gives  , 
so    Next, the data that  enables us to evaluate  

, which gives  ,  so    Finally,
  gives    minutes.

 (b)  And after 3 hours (180 minutes),  F.



Section 1.4
        First-order linear equations    are an "open and shut case," in the sense that the 
general solution is known, and we even know that the particular solution satisfying any initial value  

  exists, and is unique on the broadest open  interval, containing the initial point ,  on which
both and  are continuous.  As we turn now to equations  that are nonlinear, we 
find that we can obtain solutions only in special cases, by methods that are specialized to those cases. 
Further, even when we do find a solution, it may be in the less convenient implicit, rather than 
explicit, form.  In this section we begin with the first of those cases, the very important case in which 
the equation happens to be separable: that is, in which   can be factored as a function of  times
a function of .  As Section 1.3 covers applications of first-order linear equations, Section 1.6 will 
cover applications of nonlinear equations.  

EXAMPLES

In Examples 1 and 2, the given IVP is solvable by separation of variables.  Solve, use computer 
software to get a graph of the solution, and state its interval of existence.  In Examples 3 6 the 
solution will be in implicit form, and we will need to deal with that extra "wrinkle."  I think these 
examples will be challenging in terms of the graphs, especially for the cases in which the solution is 
obtained only in implicit form, so you are urged to pay special attention to that aspect.  In some cases 
one can look at the functions and successfully develop a hand sketch of the relevant graph, but in 
general you will probably need some computer graphics support; we'll use Maple, but you may use 
any other CAS that you prefer.  Also, we might add that there is certainly a pattern to the solutions 
that follow, but you will need to think your way through the steps, rather than following a step-by-
step "procedure." 

Example 1. (Solution by separation of variables)  Solve the IVP

 

SOLUTION.  Divide by  (or, multiply by ), multiply by , and integrate: 

.  Rather than solve the latter for  and then applying the initial condition, to evaluate ,
it is more convenient to apply the initial condition first:  , which gives   Thus, 

  The latter is the desired solution, but in implicit form.  We happen to be able to solve for
, and we obtain the solution in explicit form as
                                                                                       (A)
Remember that  tends to  as  (from the right), is 0 at and then increases 
monotonely without bound as  increases.  Including the Maple plot command, here is the graph of 

, to keep in mind:



x
1

0
1

Thus, the point(s) to watch out for, in (A), are those at which the argument namely, at 
.  The graph of the solution (A) is this:

x
1

y
1

3

5

 
, that we expected.  The interval of existence of the solution (A) is 

.
NOTE:  The plot command doesn't give us the option of putting a heavy dot at the initial point [(0,0) 
in this case].  If we really want to to that, we can do two plots: One would be a point plot, just 
plotting that single point, and the second would be the plot given above, and then we would use the 
display command to plot them together.  We won't do that here, but that sequence is discussed in the
Maple tutorial section.

Example 2. (Separation of variables)   Solve

 

subject to each of these initial conditions:  .  

SOLUTION.  First,    Apply each initial condition, in turn.

  gives so  , which gives  

                                                               .                                                            (A)

On what interval of existence?  The soluton (A) is undefined only at , so the interval of 
existence of (A) is either  or  .  Which is it?  The one that contains the initial 
point at x = 0, namely,  .  The solution does not exist at, or to the left of,  


