Making Everything Easier!”

wift

DUMMIES

Learn to:

» Get up and running with Swift on Xcode”

+Set up a playground environment to
test Swift syntax quickly

« Collect, declare, and type data

+ Create an app that uses location,
mapping, and social media

Jesse Feiler

by Jesse Feiler

DUMMIES

Swift™ For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of
the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Swift is a trademark of Apple, Inc. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book. Swift For Dummies® is an independent publication and has not been authorized, sponsored, or
otherwise approved by Apple, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http: //booksupport .wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2014954655

ISBN 978-1-119-02222-0 (pbk); ISBN 978-1-119-02224-4(ebk); ISBN 978-1-119-02223-7 (ebk)
Manufactured in the United States of America

10987654321

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

INErOAUCHIONcneeeeeaeeeeaeeaeeeeenceacenacenceaceaceancencenceanes |

Part I: Getting Started with Swiftccccccceeeeeeeeeenc 5

Chapter 1: Setting Up an Xcode Swift Projectcoccoveevieviiniinniinienienienieeieseeneee 7
Chapter 2: Playing in the Playground...........cccceceviiniinienieeneiieciecieeieeie et 39
Chapter 3: Using the Xcode Editing ToOIS..........cccceieiinininiiiiereeeeeeeeeee e 47
Chapter 4: Creating a SWift APD ..cooeeciieiieieeeeeceeee ettt 63

Part 1l: Introducing Actions................ccccaaaaacccneeneeenee. 105

Chapter 5: Operating 0n Data...........cceceriirieieierieiereeeeeeeetet e sae e seeseenees 107
Chapter 6: USing SWift TYPES.....ccoieiiriiiiiirieeiertertereee ettt ettt see e 127
Chapter 7: Collecting ODJECES......coeiiiriiririeeiieieeeeee ettt 153
Chapter 8: Controlling the FIOWc.coceeiiiiiiiiiieeeeeeeeeeeee et 175
Chapter 9: Functioning Successfullycccoceviiniiniininniniiniinieceeeeeeee e 191

Part 111: Putting Expressions Together..............cccceeeeee. 217

Chapter 10: EXpressing YOUrSelf.........ccoccoviiriiiienienieeciecieeiecieetesee st 219
Chapter 11: Declaring the SYmbOISc.cccceeiiiiiiiiiiieeee e 235
Chapter 12: Initializing and Deinitializing Data.........cccoceveerierinenenieeeeeseeeeeneen 243

Part IV: Using Components and Subcomponents........... 255

Chapter 13: Expanding Objects with Extensions...........cccccecevvinviincinienienienceeene, 257
Chapter 14: Managing Access Control for Your Objectsc.cccecueevvercienvienveneenneenne. 267
Chapter 15: Building Classes, Structures, and Enumerations..........c..ccccocevenenennee. 273
Chapter 16: Using Properties, Variables, Outlets, and Actionsc...cccccveeueennenee. 287
Chapter 17: Working with Enumerations to Consolidate Values............cccccceueeunenee. 303
Chapter 18: Using Protocols to Provide Templates for Functionality 313
Chapter 19: Mixing Objective-C and Swift...........ccccoiirirnniiinieeeeeee 327
Part U: The Part of Tenscccccccceeeeecacneecccsaneeceesss 335
Chapter 20: Ten Swift Features That Aren’t in Objective-C........cc.cccceverveeveneennenne. 337
Chapter 21: Ten Swift Features That Are Not in C..........ccccoeovieeiiieiinicieeee e, 341
Chapter 22: Ten Objective-C Features That Aren’t in Swift........ccccccoevvirviincienennnnne. 345

Indexcocccaieiiaaaaaiacanaiiennicaeecccnncecccsacecccaceecacaes 349

Table of Contents

INErOAUCTIONeneeaeeeeeaeeeeeaeeneencencencenceaceaceancencensenneane |

ADOUL THiS BOOKcvvviiiiiiiiiieie ettt eeaae e e eave e e e 1

Conventions Used in This BOOK.........ccccovviiiiiiiiieiiiiiiceec e, 2
Foolish ASSUMPLIONS........cccciiiiiiiciieee e e e 2
Icons Used in This BOOKcooovviiiiiiiiieiieeee et 3
Beyond the BOOKc.ooiiiiiiiieiiciicececte ettt 4
Where t0 GO from HETE.......oouvviiiiiiiiieeeieeeeeeeeeeeee e 4

Part I: Getting Started with SWiftcc...cccccccueeeeeacccc 5

Chapter 1: Setting Up an Xcode Swift Project 7
Looking Ahead to the Endc.cooievieeiieiieieceeceeeeeeeee e 8
Working With SWiftccooieiiiiiiieee e 11
Getting the Developer TOOISccocerciiriiiienieiicieeeeeereeteeeeeee e 13
Setting Up YOUTr MACcooiiiiiiiiiiiieeieeteeetetet ettt st st 14

Registering as a developer...........ccocccvvevieeeiieeieeeeeeee e 14
Preparing your credentials.........c.ccooeeiiriiniiniiniininieneeeeeeeeeen 15
ChoOSING YOUY PIrOZIaIMccvecveevieeieeeeereteeteeteereeseessestessesseereesnesesennas 15
Planning Your Environmentccccoevierienienieneenieieesieeieeie e 16
Using SOUrCE CONTIOL....c..covuiiriiiiiiiinieeieeieetestestee e 16
UsINg GItHUD ..ottt 17
Organizing flle€S........c.oovuiieiieeie e 18
Preparing for environmental changes...........cccccocevininenininienenene, 18
Getting Started With SWift.........ccoociiiieriiieeeee e 20
Installing Xcode and setting preferencesccceceecveciercienveneennen. 20
Creating YOUY PIrOJECTccvviivieiierierieeieetereee ettt seesae e 28
ExXploring YOUr PTrOJECtccooviiiiiiiiieiieteeteteeeeee e 31
Touring your NEW PrOJECEcoviviiriirieriententeeeieeee et 31
Adding a map to the project’s interfaceccccceevevieviecieecreennenne. 35

Chapter 2: Playing inthe Playground 39
Creating a Playground............cocoveriririionieneeneece et 39
Using a Playground...........ccccoecieiieiiiieiieeieeiesieeeesieeseesiee e eaestesaesaessneseeens 41

Testing a lin€ of COAEccvvviiririiiiiiiieieeeeteeeee e 41
ChecKing SYNTAX ...cccevieriiriiieiiiierieetestestese e esieesieesaestesstesasesasesaeens 42

Using the Timeline in the Playground............cccceevrvieeievieneneneneeieeeens 45

(/i Swift For Dummies

Chapter 3: Using the Xcode EditingTools 47
Getting Started with Editing TOOIScccoovienieiieiiieiiceeececeeeeeeeee 48
Completing Code with Code Completioncccccevviirvieevieniieniienieneeneenne 48

Using basic code completionc.cccoceeviervienienieneenensieeeeeeeeenen 48
Using code completion in @ project.......cccceceveevieneeneenennensienseennnn. 50
Working with code completion...........ccccoveiieeciieccieeieeee e 52
Using Fix-It to Correct Code ..ot 52
Folding and Unfolding Code.............oocveeivieriiniinieieieieeee e 55
Using Code SNIPPELSecueeeeeiiiiciecieeteeeeeeresie et ere st ve e saesaessessens 56
Working with built-in code sSnippetsccceevevevieveneeeeeeiereeeees 57
Creating your own code SNIPPetS........ccccvevierienierrennienienienieseeneeens 58

Chapter 4: Creatinga SwiftAppcooiiiiiiina.... 63
Double-Checking Your Environment...........ccooccevieniinennennennennienieneenens 64
Creating the ProJECtcc.icvuieiiciicieceeeetee ettt 65

Choosing the NamMe..........ccoeiiriiiiieee s 65
Understanding bundles...........ccccoecieviieciieiieniienieceeseeeeieee e 66
Reviewing a project’s file structure...........cccoecverienceeniennenneereeienen. 67
Working with WOrkSpaces.........ccceeveiiiniincienciinieniecieseceeeeseeiee 68
Testing the Templateccccooiviiiiiiniinie e 70
Setting the Location for iOS Simulatorccccecvevvieiieeieecieecieereeieeeeiens 73
Adding devices to i0S SIMUlatorcccccerevireerieriirereneeeeeeens 73
Managing the i0S Simulator location...........cccceeeeeciieciieciecciecieeeenen. 76
Adding the Map to the Storyboard and Projectc.ccceceeveecivrcieeviennennen. 78
Testing the ADD ..ottt 81
Adding Swift Code to LOCatappccocceveieriiirienienienieneeseeeeeeeeee e 82
Setting and confirming location settings in i0OS
Simulator and on devicCes..........cocccueeeriniererencneineeeeeeeeeeeee 82
Making the app display the user’s location
(Part 1: Core LOCAtion)ccceevieniienieeriieieeieeieeeese e e eve e 86
Making the app display the user’s location (Part 2: MapKit).......... 92
Storing the user’s location (Core Data)cccccevevveerviercieriienieneennen. 94
Displaying the stored location...........cocceeceevieniinenneniennienienieneene 102
Testing the App with Location Data..........ccceeeveeeiiineninenieieeeeeeee 103

Part 1l: Introducing Actions.............cccccceeeeaacacneeenenee. 105

Chapter 5: OperatingonData.........................ccviutn, 107
Classifying OPerators.........ccooceveeeeieiierienieneeeeteee ettt 108
Answering Syntax Questions with Playgrounds...........ccccecveviievieeviennnne 109
Clearing the Way for Operators.........ccoceveevieeviinciincienieciesieeeeseeseesae e 111
Assigning Values with Assignment Operators..........ccoceevevverviervienivenceenne 112

Counting On Arithmetic Operators for Math..........ccoceeviniiniinnnnnennnn. 113

Table of Contents

AIHION .ttt 114
Handling over- and underflow conditionscccccecveviievieeivennnens 114
SUDTFACTION ...ttt 115

MU PHCALION ..ottt 116

DIVISION ..ottt ettt s 117
Handling undefined results and errors........ccccoeceeverviervierieenieeneenns 117
Using remainder diviSion..........c.ccceeeiieeiieeiieeciicceeeiecee e 120

Incrementing and Decrementing Numeric Values.........ccccoeeverveneenennee. 122

Combining OPErators.........cceccieeeereeriieiierieereesieete e ereeeesreesreeseeesaeesseenses 123

Comparing ValUEScccoviiriienieiiiiieerieesieeie et ere e e e see s seeesaeesaeenees 124

Choosing and Checking Values with Logical Operators...........c..ccc....... 125

Chapter 6: Using SwiftTypes...............ccoiiiiiiiiinn, 127

Understanding Types and Type Safety......c.cccocvvveiiininiinciniinieneeeene, 128
Considering type Safetyccccovieriiniineniiieceeeee et 128
EXploring SWift tyPeS.....c.coouiiiiiecieeiecieeeeeeeeee et 130

Swift Standard Library TYPEScoceecieviirerinieieieeeeeeeete e 131
SEEINZS.cutietieiieieeieee ettt ettt e steete e te e te s e e s e e beesseesseesseessessaassnessaenns 132
ATTAYS .ottt ettt ettt ettt et et aeenaeebeente s 132
DiICHIONATIES.... ettt 133
INUIMETIC tYPES ..coviiiiiiieiieiteieete ettt ettt st 133
ProtOCOIS ..o 133
Free functions.. ...t 137

Specifying Variable or Expression Types with Type Annotations......... 138

Dealing With TUPIES.......cceeciiriiiiieieeereeeeeee e 142
Decomposing @ tUPIe........cceevueeieriinieniineeecieeeee e 142
Accessing tuple values with names........c.cccoceevvivniinenninnennencieneen. 144
Accessing tuple values with index numbers...........c.ccceecvveecerennenne 144
Skipping tuple values with underscores...........ccceceeveeviererenenenen. 144
Creating a tuple With tyPes......cccccieiieieriericececeee e 145
Type safety With tuples.........ccccevieeiiiieieieieeceee e 145

Working with Optional TYPESccceviiriiiniiniiieieeeeieeieee e 146
Using optional types for values that may or may not exist........... 147
Using forced unwrapping with exclamation marks....................... 148
Using optional binding to access an optional value....................... 149

USING GENETIC TYPES .uveevieeieeiiieiieieeieeseeste et e steeteeresressaesseesseessaesseeseenses 150
Using a generic functioncccecevierienieneeneeneesieeie e eeeseenes 150
USING @ ENETIC LYPE cuvivvivieeieeieieieteeeeeeetete ettt sve e eeeas 151

Chapter 7: Collecting Objectsccovviinevnnnnn. 153

Playing by Swift Collection RuUlescccccovvienirriniinniriniinieieeeeen 153
Managing a collection of ObJECtSccecvreveierirerieeeeeeeeeeeen 155
Looking inside a Swift collection objectcccoeeveciieciiecieeiennnens 157
Mutability of COllECHiONSccceevierieciieiieeeeee e 158

Switching mutability.......ccccceevieviieiieieeeceeeeeee e 159

(/Ill Swift For Dummies

Organizing Data Sequentially with Arrays.........ccccecoeevieevienienieneeceeeenne. 160
Comparing full and shorthand array syntax forms....................... 160
Creating ArrayS...c.cccceecueecieeiesieniesteneeseesreesseesseessessseessessessesssessnenns 161
Working with arrays and their elementsccccoeceevviriineennennnn. 162

Organizing Data Logically with Dictionaries..........cccocceecercienviincienennnnnne. 169
Comparing full and shorthand dictionary syntax forms 170
Creating dictionariesccoccveeieeiereeeeeeeeeeee e 170
Working with dictionaries and their elements.............ccccceeeeeenen. 170
Fast enumeration over a dictionaryc.cccoeeceeeeeeinieincieinceeniieenne 171
Reporting errors with a dictionary..........cccecevvveveeneecenseniencieniens 171

Chapter 8: Controllingthe Flow...........................c..t 175

Looping through Code.........ccvviiieieiiiieeceeeeeeee e 175
USING fOF LOOPS ..ottt 176
UsSIing Whil€ l0OPSovuiieieeieieieieieeee e 185

UsING CONAItIONS.......coivieiieiieiieieeieceee ettt sre s 186
Working with if statements...........cocoeeeiiiineninice 187
Working with SWitChes.........cccceviiiiiiiiiciecceceeee e 187

Transferring CoONtrolccccocievieiiiniiniienieneeseeee et 189

USING ASSEITIONS ...couviiiiiiiiiieiieieeieeteste sttt sttt st s saaesaeeneas 189

Chapter 9: Functioning Successfully 191

Setting the Stage for the Social Media Location App......ccccecvevvervenuenne. 192
Introducing LOCAtappccoveevuervieriienienienieseeieesieeieee et 192
Creating the Locatapp Projectccoevveeieeciieiieecieeieeie e 193
Modifying the template..........cccceevieeienieiieeeeeeeeee e 196

Exploring the Functions in Locatapp.......cccccceeveevieeiiiesieecienieeieseeseeeeene 208

Understanding the Locatapp Architecturecccccoeevviencienviinieneenennne. 209

Uncovering the Function Featuresc.ccocevevviriinniniiniiniinienceene, 210
Basic function syntax — configureView().......cccccevervuerviervienieenenns 210
Overriding a function — viewDidLoad()cccccovereevvrcienierienenenen. 211
Calling the super function — viewDidLoad()cc.cecevveevueruenenenne. 211
Adding a parameter to a function —

controllerWillChangeContent()cccccevveeveeveenersiencienieneeneenne 212
Using multiple parameters in a function —
controller(_:didChangeSection:atindex:forChangeType:) 212
Using external names for parameters — controller
(_:didChangeSection:atIndex:forChangeType:).....ccccccevvrurruenne. 213
Returning a value from a function —
numberOfSectionsInTableView()ccccccvvervierieniieniienieneeneenne 214

Adding Location SUPPOTIt........ccvviriiriiniienieieeeeeeeeee e se e 214

Table of Contents

Part 111:Putting Expressions Together.............uceeeeeee. 217

Chapter 10: Expressing Yourselfot 219
Surveying the Types of Swift EXpressions........cccccecvvvveevencienciencieneeneenne, 219
Exploring optional type operatorsc.cccocevveveeneevierniensienieennens 220

Prefix €XpresSions.........cvieeeiciieiieeeiecciee e 222

POStfiX @XPreSSiONS.......cceecviieciieieceeeceee e 223

Binary €XpresSsionsoc.eoveiverieniinienienteneenteseeseeee e 223

Primary eXpresSsSions.........oceeceecieeciieieeieeeeseesie e esieeie e ae e ene e 225
Understanding Lazy Loadingccccoevevienieneenieieeeeieeieeee e 229

Lazy loading with Objective-C..........cccocevviiriinieniineeieeiecieeieeeene 230

Lazy loading the easy way with Swift........ccccoevvniininiinniniininnns 232
Summarizing lazy 10adingc..ccoccevviervieniieniinieniieeeeeeeeeeeene 233

Chapter 11: Declaring the Symbols............................. 235
Navigating through Symbols with the Symbol Navigator 235
Choosing types of diSPlays.......c.cceeeririririenienereeeeteeeree e 236

Choosing what to diSplaycccceeveerienieiieiieieeiecce e 238
Preventing Disasters with ASSertions..........ccceceeeeviivieciencencenieseeeene, 238
Patterns...c.oouioiiieee e e 239
RANGES ...ttt s 241
Chapter 12: Initializing and DeinitializingData 243
Understanding Initialization...........ccoceeveniiniininninninieeceeeeeeen 244
Performing Initializationcccoeeveeiieiiiniicieeeeeceeeeeee e 245
Setting default values for stored propertiescccocevevuenencnnen. 246

Creating initializers for stored properties..........ccccccecuvrviervieecvennenns 248

Adding parameters to initializerscccocceeveevienvieniienieneeneeceeene 250
Understanding Deinitializationccoccovvievvieninninninniniecieciceeceeee 254

Part IV: Using Components and Subcomponents........... 255

Chapter 13: Expanding Objects with Extensions 257
Working with a Swift EXtENSIioncccccceeeeeeierienieceeeeieeese e 258
Using Swift Extensions with a Built-In Class.........ccccovevveniiniinienienennne. 262

Chapter 14: Managing Access Control for Your Objects 267
Introducing Access Control Levelsccccooceeveeniriinneniieniienienienceieene 268
Using Swift Access Control Terminologycccecvevveecieecieeresieseeneenne. 269

MOAUIES......coueiiiieeeeee ettt 269
FALES ..ttt 269

x

X

Swift For Dummies

Chapter 15: Building Classes, Structures, and Enumerations

Exploring Classes, Structures, and Enumerationsccceceevvervenennee.
Declaring a Simple Class........cceceecierieniienienieneeieesie e ete e seee e
Exploring a Swift Class, Structure, or Enumeration File..........................
Comments and COPYTrights.........cocieviiniiiiiiiiireceeeeeeeee
Import declarations...........cceecveeiieeeciieceeeeee e
Class declaration..........ccooeveeieieierienere et
Structure declarationcocceveeiriniinieieneneeeeeee e

Chapter 16: Using Properties, Variables, Outlets, and Actions......

Understanding Properties and Variablesc..cccoveiviniininenienennne.
Encapsulating Data for Good Design and Maintainability.......................
Understanding Properties and Variables in Locatappccccccceeveennee.

Types of Swift Properties........ccccecvrverieniieniiinieniceeceeeeeeeeeeene
Declaring Outlets and ACtionSccccoeveeviiniininniiieneeieeeesee e

Chapter 17: Working with Enumerations to Consolidate Values ...

Using Enumerations with Swift..........ccoccoviiniinninieee,
Understanding Traditional C Structures and Enumerations
Exploring Swift Enumerations...........cccocoveveninieneneneneeeeeee e
Working with members of an enumeration...........c.ccccceevveveerennen.
Working with a function inside an enumeration..............cccccevnnee.

Chapter 18: Using Protocols to Provide Templates
forFunctionality i

Understanding ProtoCols.........cccoeciiiviiiiiiiniiiiieceeceeceee e
Experimenting with Protocolscccecceviiiieniiiieiiiniciecececeeeeeeee
Declaring a ProtoCoL.........coceeveevieriiiriieniieniertenteseesie e ae e
Adopting and conforming a class, structure, or
enumeration to a protocol........c.cccoecveevieecieeiieeeeeee e,
Exploring Protocols and a UlTableViewController.............ccccccoeruenuenenne.
Looking at delegation and protocols..........ccceeeeeeiirriiincieinieenieene
Setting delegates in Interface Builderccccoveveveevinviiniienciennnnns

Chapter 19: Mixing Objective-C and Swift

Comparing Frameworks in Objective-C and Swiftccccccovvvevieneennenne.
Identifying the key method.........c.ccoovvvviiiniiniiniiniicceeeeeee
Comparing declarations.........ccoceeeereeneriinnensieeieeeeie e

Table of Contents

Calling an Objective-C Method in Objective-C

within Swift to Set a Pin on the Map.......cccooceeoiiviiiinininieeeeeee 331
Bridging between Objective-C and Swiftccccceevievieienciniicieeeeee, 334
Part U: The Part of Tenscccccecceeeeecanceeeeccaaceeeeeeass 335
Chapter 20: Ten Swift Features That Aren’t in Objective-C 337
Using Playgrounds to Explore Code and Syntaxcccceeueeeverieneennennne. 338
USING TUPIES ...ceviiiiiiiteeeeeeeeeteet ettt st e b e st saaesaaesaeenes 338
Using Ranges t0 Save Codeccoovuiviiriiniinienieieeieeeeieste st 338
Taking Advantage of Strict Typing and Type Safetyccccecuevieniennennne. 339
Initializing Your Variables and Constants............cccceevveevveecieeiesvesvenneenne. 339
Understanding Optional TYPeSs........ccccoceveririiriierienenireeeeeeeee e 339
Looking at Frameworks for Your Own Code...........ccccceevuercvenienreneenneenne. 339
Including Annotations and Attributes in Declarations...........c.cccecveunen.e. 340
Deinitializing Variables Where Necessary........cccccoeevveeviercienieneeneeneennes 340

Use Patterns to Simplify Your Code.......cccoovievirviniinniniiniiniinienceeene, 340
Chapter 21: Ten Swift Features That Are NotinC 31
SrONG TYPING .cuiiiiiiiiiiieieeeeeeeee ettt ettt st st esbe e 341
Libraries EXteNd C........ccccooiveriiininiirincininieteeneteeneseee et 342
Switch Statements Fall through Cases in C..........ccccooeviniiieiinininenne 342

CIs an International Standardccccooevinirniineninenneeeeeeeeee 343
Swift Is Tightly Linked to the Cocoa and Cocoa Touch Frameworks 343
Swift Includes Memory Managementccoceevueerierniennieniienieneeneeneennes 343
Swift Is Designed to Function in a Multi-Threaded Environment........... 343
Types Can Be Created Easily in Swift..........cccccoveeieiiiiieiieieeeceeee, 344
Swift Has Its Own IDE and Compilerccecevvieiiinenineniireereneeeeene 344
Types Can Be Classes, Structures, or Enumerations............ccccceeuvennnee. 344
Chapter 22: Ten Objective-C Features That Aren’tin Swift 345
Saying Goodbye to Header (.h) Files.........cccccoeveevieviininieicieeeceeee 345
Saying Farewell to Dangling Pointers (Almost Always).........cccccevvenuennee. 345
Forgetting About Uninitialized Variables and Properties 346
Exploiting a Common Superclass Like NSObject.........cccccecerviirienennnennne. 346
Managing Type Casting.........ccceeveviieviieiieieeieeceeteere e 346
Preferring Closures to BIOCKSccceviivinininiiiieeeeeeeeeee 346
Getting Rid of Legacy Memory Managementcccccecverveneeneeneenreene 347
Replacing Property Decoratorsccceveeieneenieeninnieerienieeieseeseesieeees 347
Using Swift Style to Access Class Properties..........ccoceevverciinciinieneeniennne. 347
Clarifying Swift Access Control..........cccceverviriiniinienierieteeeeeeeeen 347

L PR 11

XII Swift For Dummies

Introduction

’ n June of 2014, one of the highlights of Apple’s Worldwide Developers
Conference (WWDC) was the announcement — a surprise to many attendees,
including the multitudes of developers watching the videos around the world —
of the development of a new language aimed at developers to use with iOS and
OS X devices. Called Swift, it was presented as the language of the future for
Apple’s developers, but it was made very clear that it would cooperate with the
existing basic development language — Objective-C. (In describing the ways
Swift and Objective-C would interact, Apple repeatedly used the phrase “mix and
match” — not only in the presentations at WWDC, but in other venues as well.)

Think about that date— Swift has only been around since June 2014: We'’re
all beginners with Swift.

About This Book

Swift For Dummies is a beginner’s introduction to Apple’s new programming lan-
guage. The book gets you started developing with Swift. You'll quickly see how

to create projects in Swift from the built-in templates that are part of the Xcode
development tool. From there, you delve into the features of the language, from the
basic to the advanced. Some of these features are unique to Swift whereas other,
possibly more familiar features were inherited from other programming languages.

Before we get started with Swift, consider these two points:

v+~ Apple has done this before, and they know how to do it. On both the
hardware and software sides, Apple has successfully managed transitions
to new technologies. Developers have sometimes cheered, sometimes
booed, and even sometimes not even noticed much difference, but
nonetheless, Apple has managed to bring them along to a new technology
that makes their lives easier and improves things for users.

v The languages are only part of the development environment for
Apple. When you develop apps for iOS or OS X, you use the Xcode
development tool (technically an Integrated Development Environment,
or IDE), the Cocoa or Cocoa Touch frameworks, and a programming
language — either Objective-C or Swift. What differentiates the iOS and
OS X development environment from most others is that the language is
only one-third of the overall environment, as well as the fact that a single
company (Apple) controls all of that environment.

2

Swift For Dummies

Conventions Used in This Book

Cocoa is the framework you use for developing Mac apps; Cocoa Touch is
the framework for iOS apps. Both have a common heritage and many similar
classes. In general, classes that start with NS are Cocoa classes, and classes
that start with UI are Cocoa Touch classes. Many Cocoa NS classes are also
used in Cocoa Touch, so you’ll find both types of classes in many of your
apps and in the sample code and templates.

Code examples in this book appear in a monospaced font so that they stand
out a bit better. Some non-syntax components appear in an italicized
monospaced font. (Thus, weatherConditions might be a variable, but
variable could be any variable you want to use.)

Like many languages, including Objective-C, Swift is case-sensitive, so please
enter the code that appears in this book exactly as it appears in the text. |
also use the standard Cocoa naming conventions — such as capitalizing class
names and leaving the names of methods and instance variables lowercase.

Note that all URLs in this book appear in a monospaced font as well. In accor-
dance with common usage, most URLs in this book include the subdomain
(such as www) at the beginning of many URLs except for addresses that don’t
require that component (such as developer.apple.com).

If you're ever uncertain about anything in the code, you can always look

at the source code on my website at www.northcountryconsulting.
com or the For Dummies website at www . dummies . com. From time to time,
I'll provide updates for the code there and post other things you might find
useful.

Foolish Assumptions

This book makes few assumptions about readers because Swift programmers
come from many backgrounds and with varying degrees of proficiency in
various languages. As to the future, however, there’s one simple assumption:
You want to create apps based on the Cocoa and Cocoa Touch frameworks,
and you want to do it in the simplest way possible.

Fittingly, then, this book is aimed at Cocoa and Cocoa Touch developers at
all stages of expertise, from those who’ve developed a multitude of App Store
apps to those who have only thought about developing an app . . . someday.

http://www.northcountryconsulting.com
http://www.northcountryconsulting.com
http://www.dummies.com

Introduction 3

[also assume you have some Mac or i0S experience. If you have never

used a Mac or iOS device, you may find it hard to follow this book. I explain
advanced technical terms as they arise, but my assumption is that you know,
for example, what Settings (on iOS devices) and System Preferences

(on Macs are), and that similar concepts are familiar to you.

You must have access to a Mac that can run the current version of Xcode
(a free download from developer.apple.com). Without Xcode and the Mac

to run it on, you can’t experiment with the sample code.
WBER
\‘&
S Note that Xcode runs only on Macintosh computers running Mac OS X v10.9.4

(Mavericks) or later on a 64-bit Intel-based Mac.

Additionally, you must have Internet access. It’s very important to stress,
however, that I don’t mean “always-on” Internet access. I only mean that you
must at least have limited Internet access — so you can access the App Store,
for example, and connect with Apple’s developer.apple.comto download
software and upload apps.

Perhaps the most foolish assumption of all may be your own: that you can’t
learn Swift or the Cocoa and Cocoa Touch frameworks. You can, and this
book is designed to help you. Bear in mind that app development is not easy:
If it were, the App Store would have far more than just over a million apps.
It’s not easy, but you can do it.

lcons Used in This Book

W
This icon indicates a useful pointer that you shouldn’t skip.
¢MBER - . : . : .
O This icon represents a friendly reminder. It describes a vital point that

you should keep in mind while proceeding through a particular section of the
chapter.

This icon signifies that the accompanying explanation may be informative
(dare we say interesting?), but it isn’t essential to understanding Swift. Feel
free to skip past these tidbits if you like (though skipping while learning may
be tricky).

This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.

http://developer.apple.com
http://developer.apple.com

4 Swift For Dummies

Beyond the Book

Alot of extra content that you won't find in this book is available at www.
dummies . com. Go online to find the following:

v Source code for the examples in this book at

www.dummies.com/extras/swift

This book contains a lot of code, and you might not want to type it.

In fact, it’s probably better if you don’t type this code manually.
Fortunately, you can find the source code for this book on the Dummies.
com website at www.dummies.com/extras/swift. The source code
is organized by chapter. The best way to work with a chapter is to
download all the source code for it at one time.

v Online articles covering additional topics at

www . dummies.com/extras/swift

Here you'’ll find out how to know whether to use a type, collection, flow
control, or function to implement an action; how to initialize stored
properties in a class or structure; and how to let Xcode create actions
and outlets for you.

Ongoing discussions at developer.apple.con (for registered devel-
opers only) and at my website (www.northcountryconsulting.com)
provide even more information.

+* The Cheat Sheet for this book is at

www .dummies .com/cheatsheet/swift

Here you’ll find an examination of the anatomy of a Swift class, the best
way to update Xcode for a new Swift release, and advice about working
with both Swift and Objective-C.

v~ Updates to this book, if we have any, are also available at

www .dummies.com/extras/swift

Where to Go from Here

It’s time to start your Swift adventure! If you're new to programming, start
with Chapter 1 and progress through the book at a pace that allows you
to absorb as much of the material as possible. If you're in an absolute
rush to get going with Swift as quickly as possible, you could possibly skip
to Chapter 2 with the understanding that you may find some topics a bit
confusing later.

http://www.dummies.com/extras/swift
http://www.dummies.com/extras/swift
http://www.dummies.com/extras/swift
http://developer.apple.com
http://www.northcountryconsulting.com
http://www.dummies.com/cheatsheet/swift
http://www.dummies.com/extras/swift

Part |
Getting Started with Swift

getting started
with

Swift

http://www.dummies.com

AN W WA

In this part . . .

Set up an Xcode Swift project.
Find out how to use a playground.
Explore the Xcode editing tools.

Write your first Swift app.

Chapter 1
Setting Up an Xcode Swift Project

In This Chapter
Introducing Swift
Setting up your computer for Swift
Defining your development preferences
Creating and exploring your first project

Swift is Apple’s new language for developers to use with i0OS and OS X
devices. As such, it is the successor to Apple’s existing i0S/0S X
development language, Objective-C, but Swift has been designed to cooperate
with and work alongside Objective-C, so this should be a slow transition

to power.

Some Swift beginners come to the language with proficiency in other
languages, ranging from C and its offshoots such as C++ and Objective-C,
to newer languages such as Ruby, Python, and Java, as well as scripting
languages such as PHP and JavaScript.

Whether you're just starting out as an Apple developer or are an experienced
developer who wants to add Swift to your skills, this chapter helps you get
started. There’s one very important point to remember: As of this writing,
the iOS API (application programming interface) and SDK (software develop-
ment kit) are less than ten years old. (They were launched in early 2008, six
months after the launch of iPhone.) The early years of iOS development were
an exciting period as the pieces of today’s hardware and software environ-
ment fell into place. Only as thousands of developers and millions of users
started actually using these devices and the languages that support them did
some issues — bugs as well as great enhancements — begin to take shape.

Arguably, it took several years for the SDK to reach maturity. Many
developers (including your humble author) believe that it was only with
the release of iOS 4 in 2010 that the platform more or less stabilized as the
operating system we recognize today. This was the first version to be called

8

Part I: Getting Started with Swift

SNe

“i0S” rather than “iPhone OS,” and, with the release of iOS 4.2.1 in the fall of
2010, it was the first to support both iPhone and iPad. The first version of
multitasking was present, and preparations were made for iCloud that was
first released in iOS 5.

If you haven’t looked at iOS since that time, a lot has changed. The release
of Swift and iOS 8 is a good opportunity to look around and get up to date
with i0S (and, for that matter, OS X). This chapter helps you do that.

In this book, you'll occasionally find warnings like this one about serious
issues you should avoid. The warnings are used sparingly, so pay attention
to them when they appear. The focus in this book is on getting you up and
running as a Swift developer. That involves giving you the information you
need as well as helping you along the way with encouragement and, from
time to time, reminding you that you’re not the first person to learn Swift.
Others have been there before, and, in most cases, others (most definitely
including the author) have encountered the problems you may be facing.
There are a multitude of warnings in this chapter. This isn’t intended to scare
you off: Rather, it’s designed to help you over that first hump of becoming a
Swift developer. After you have your first clean compile and have finished a
build of a project (in the section, “Planning Your Environment,” later in this
chapter), you'll be on your way.

Looking Ahead to the End

As you make progress in Swift, this book helps you build an app — a real, live
app — based on one of the built-in Xcode templates. Sure, you're probably
thinking, that’s just what I need — another “Hello World” app.

Actually, no. There’s no “Hello World” here. Instead, the app you’ll be
building, called Locatapp, is a full-fledged Swift app created using the
Master-Detail Application template that’s built into Xcode, and it uses Cocoa
Touch and a number of its frameworks to do its work. Locatapp uses location
services on Cocoa Touch and the i0OS mobile devices to find your location,

as you see in Figure 1-1.

If you prefer, you can download Locatapp from this book’s companion
website, as described in the Introduction, but be warned — some of the
details of registering as a developer described later in this chapter are
needed to get Locatapp to run on your own device.

The pulsing blue dot shows your current location. Locatapp lets you store
other locations you’ve visited. The latitude and longitude values of locations
that have been visited are shown in the list at the left of Figure 1-1. Tap one

Chapter 1: Setting Up an Xcode Swift Project

|
Figure 1-1:
Locatapp
finds your
location.
|

|
Figure 1-2:
Zooming

the map.
|

o

Edit Master = Detail M
latitude: 44.69394654039...
ncouvar
latitude: 44.69390245157... > P
Chicagog g "
UNITED STATES . FMew vork
Srancisco,, JWJsh-ngton
Los Angeles®
MEXICO e
Maxico City© VW
REPUBLIC
HONDURAS

Legal
MICARAGIIA

of them, and you’ll see a map with your current location and with the tapped
location indicated by a red pin.

You can zoom in on the map (see Figure 1-2). This zoom-in functionality is all
built into MapKit and the device so you don’t have to write any code. As you
zoom in, you can see that the two locations shown in Figure 1-1 are actually
over 100 miles apart. The annotation for Current Location is also part of

the framework.

Edit Master = Detail M

latitude: 44.69394654039... Trois-Rividresg

J Ottawa 5 Sherbrook.
k - Current Location 27 ° 0% MAINE

latitude: 44.69390245157...
®

Kingstcno White Mountain
Adirondack VERMONT National Forest
Park Preserve :
rm gPortland
tario. NEW
O HAMPSHIRE
~Rochester

NEW YORK OManchester
Albany

MASSACHUSETTS

Springfield SProvidence

CONNECTICUT

New H:w-_-no

9

10

Part I: Getting Started with Swift

|
Figure 1-3:
Writing

your own
annotations.
|

In addition to the built-in annotation for Current Location, you can write
your own annotations in Locatapp. Figure 1-3 shows a custom annotation
that you’ll write in the course of this book.

That action button at the right of the bar in the interface (the box with the
arrow poking out of the top) is an interface element you can drag from the
Xcode library into your user interface (called a storyboard). What happens
when you tap that action button depends on a method you’ll build in this
book. This method uses the built-in actions such as Messages, Mail, Twitter,
Facebook, and so forth, as shown in Figure 1-4. (Yes, you'll write this code,
but Cocoa Touch writes the supporting code to interact with Messages,
Mail, Twitter, Facebook, and more.)

Figure 1-5 shows a tweet you can construct in your app. Users can modify
it (note that there are 57 characters left), but you write the code for the
message and to insert the map coordinates. Note, too, that the image of a
web page is part of the tweet. You'll see how to automatically put that into
the tweet. Although you can tap the image of the web page all you want in
this book, in Locatapp, tapping that image will take you to the web page

in Safari.

I'm sure you'll like Locatapp and enjoy thinking of ways you can build on it.

As I like to say, “Goodbye, ‘Hello World.””

Edit Master = Detail M
latitude: 44.69394654039... Trols-Rividres
I(k Ottawa, (fortreal oSherbrooke

MAINE

latitude: 44.69390245157...

@
Where | am

Kingsto n?. 4 £ Vhite Mountain
latitude 43.088967 longitude 43.088967 lational Forest

i SPartland

‘ario NEW
O HAMPSHIRE
~Rochester

NEW YORK “Manchester

MASSACHUSETTS
Seringfistd Providence

CONNECTICUT
New Haven

o]

Chapter 1: Setting Up an Xcode Swift Project

|
Figure 1-4:
Implementing
an action
button.
|

|
Figure 1-5:
Constructing
social media
messages
from your
code.
|

Cancel Twitter Post

I'm using Locatapp at latitude 43.088967 longitude 43.088967 [

Location

= - -
.-ASDFGHJ
SIS 2« o v e
B » @

Plattsburgh

Working with Swift

Apple has two annual calendars of events. Each is highlighted by one or
more major announcements with periodic updates throughout the year.
For consumers and end users, the annual calendar focuses on the releases
of new and updated devices. As is true throughout the world of electronics,
a large portion of annual sales occur during the summer and fall (“back-to-
school”) and during the year-end holiday season.

11

12

Part I: Getting Started with Swift

On the software side, there is a related peak period. It’s no accident that
Apple, Google, and Microsoft all hold conferences for their developers in May
and June. Typically, they unveil the new features in their operating systems
at that time, allowing developers a few months to work with those features
before the peak period of hardware sales.

In June of 2014, one of the highlights of Apple’s Worldwide Developers
Conference (WWDC) was the announcement — a surprise to many
attendees — of a new development language for i0S and OS X devices.
Called Swift, it was presented as the language of the future for Apple’s
developers, but it was made very clear that it would co-operate with the
existing basic development language — Objective-C.

This book gets you started developing with Swift. You'll quickly see how to create
projects in Swift from the built-in templates that are part of the Xcode develop-
ment tool. From there, you'll delve into features of the languages ranging from the
basics to the advanced features that are unique to Swift as well as some features
of Swift that may be familiar to you from other modern programming languages.

Swift and Objective-C are the languages most often used in building apps for iOS
and OS X. Combined with the Cocoa (OS X) and Cocoa Touch (i0S) frameworks
and Xcode, these languages allow you to develop just about anything you can
dream of. It is hard to find an app that can’t be written with these tools: OS

X and iOS apps as well as other Apple products such as Pages, Keynote, and
Numbers are developed using Xcode and the Cocoa frameworks. Most of the
language work for these products is in Objective-C or Swift, although some sec-
tions are still in C++. Apps developed with these technologies are native apps.

If you don’t want to go the native route, you can consider using other
(non-Apple) frameworks. Three widely used frameworks are Titanium
Appcelerator, PhoneGap, and HTML5, which is frequently used as a develop-
ment tool without being a framework. In the world of Titanium Appcelerator,
you typically write in JavaScript, whereas in PhoneGap you use Javascript,
HTML, and CSS. HTMLS5, of course, is itself a language, which you can use in
conjunction with JavaScript as well as other languages.

The advantages of using these non-native frameworks center around two features:

v With these frameworks, the development process may be faster than
the native-app framework.

v Using these frameworks can help you develop cross-platform apps.
The biggest disadvantage is that non-native frameworks are third-party tools

and as such aren’t guaranteed to support new (or even all current) features
of Apple’s operating systems and hardware.

Chapter 1: Setting Up an Xcode Swift Project ’3

The cost of developing a native app for i0S, OS X, Android, or even Windows is
likely to be significantly higher than that of using one of the tools listed here.
Before making a decision, you may want to explore tools such as FileMaker (a
wholly-owned subsidiary of Apple), which is designed for use by non-program-
mers. Originally a database application, FileMaker now has become a key tool
for people who may never write a line of code in their life but are comfortable
(and happy!) spending their time analyzing data and the processes that use it.
Give FileMaker a look — particularly if your app idea is data-related.

In terms of cost and difficulty, FileMaker is likely to be your best choice;
Titanium Appcelerator, PhoneGap, and HTML5 the second-best; and native
app development with Swift or Objective-C (or both) the third. In terms of
flexibility, however, this order would be reversed — the native apps are the
most flexible, and tools like FileMaker are the least.

If your goal is to “get an app deployed by next Tuesday,” FileMaker may be
your best bet (if it can be done at all). On the other hand, if your goal is to
build something that will last or — perhaps more importantly — something
that will develop your skills and expertise in this rapidly-growing mobile
world, native apps with iOS and OS X are usually the way to go.

Getting the Developer Tools

The tools you need to develop with Swift for iOS or OS X are simple:

v A Mac: Any current Mac has enough processor power and memory
to build apps. As of this writing, you must be running Mavericks
(0S X 10.9) or Yosemite (OS X 10.10).

v Xcode: Xcode is the integrated development environment (IDE) for building
OS X and iOS apps. You can download it for free from the Mac App Store.

These are the essentials: They're really all you need. However, a few additional
tools can be very helpful — even necessary for some developers — but if

you don’t have them, don’t worry about it. There are some workarounds and
compromises if you're missing these tools. They include:

v An iOS device (if you're developing for the iOS platform): It’s possible
to develop an iOS app with no hands-on experience, but the results
will show, particularly when you get reviews in the App Store along the
lines of, “Hasn’t the developer ever tried to use an iPhone?” Writing an
app based on an understanding of iOS devices gained from articles and
advertising is very difficult. It’s much easier if you have access to the
real thing. The one exception to this is when you’re working on only a
component of a larger app, one that doesn’t involve the user interface.

14

Part I: Getting Started with Swift

ANG/
&>

” Internet access: If you only have intermittent Internet access, you can
still develop, but with limitations. Certain tasks, such as getting your
app into the App Store, require Internet access.

v~ Plenty of disk space and a robust backup mechanism, such as Time
Machine: “Plenty of disk space” can mean a large internal disk, one or
more external disks connected to your Mac, or cloud-based storage. The
backup mechanism is important because you need to be confident that
all of your project’s files are properly backed up and can be restored, if
necessary.

The Apple developer discussion boards (Apple Developer Forums, located
at https://devforums.apple.com) provide a valuable resource, as |
describe in the following section. Every few months, a plea for help shows
up on those boards that goes something like this: “How do I get my app
into the App Store? I've written it and now I have to get it into the App
Store.” (Such questions pop up in other places on the Internet as well.)
Native apps need to be written in Swift or Objective-C, and they must
abide by the rules of the App Store and the Mac App Store. Make certain
you understand this before you start work. Writing an app in Java, HTMLS5,
JavaScript, Objective-C without the Cocoa or Cocoa Touch framework, or
even COBOL counts only as a personal experiment with a user interface;
your app can’t be moved into the App Store. You may be able to distribute
it as an app-like website, but not as a native app. Along those lines, the
various commercial app development frameworks and services may or
may not be useful to you.

Setting Up Your Mac

This section provides a quick overview of setting up your Mac for development
in general and for Swift in particular. The basic steps are included here, and,
as you'll see, each one can open a variety of doors to additional steps and
information.

Registering as a developer

The basic developer tools are free, and you can start work immediately, but
Apple requires that you register as a developer at developer.apple.com
before you can access many of the tools and features that you'll need,
particularly for testing. More and more of the developer website is available
without logging in, but some of the key features require registration.

https://devforums.apple.com
http://developer.apple.com

Chapter 1: Setting Up an Xcode Swift Project ’5

A\

\\J

Not only do you need to register, but in some areas of developer.apple.
com, you need to sign a non-disclosure agreement. You will be invited to
join a developer program, which may entail an annual fee (see the upcom-
ing section, “Choosing your program,” for more on this), but if you're on

a limited budget or just exploring, you can get quite a long way by saying
“No, Thanks” to the offers. Rejecting offers like these and surveying the site
is a good way to get your feet wet and get a good general understanding of
the environment — although it does not let you submit your apps to the
App Store.

The rules and policies of Apple’s developer programs change from time to time
and from country to country. Look at developer.apple. com for the latest
definitive information. Be particularly careful of web postings you find that
may be from the past. Always check the posting date from any articles you

rely on — and that includes articles from Apple on developer.apple.com.
You can usually find this date at the bottom of an article.

Preparing your credentials

For basic registration, you need to identify yourself to Apple. The standard
way of doing this is to provide an Apple ID. Your Apple ID is not confidential,
but your password is. Go to appleid.apple.com to register or to manage
your Apple ID (including changing your password, if you want).

You may have more than one Apple ID (and you may need to have more than
one, in some cases). Some developers have separate Apple IDs for personal
use in addition to ones used for development. You may have a different
Apple ID for developing apps than you have for developing iBooks — in fact,
at the moment, this is a requirement.

For more on this, see the section, “Planning Your Environment,” later in this
chapter.

Choosing your program

Apple offers a number of different developer programs in which you can
enroll. The simplest one is an individual program, which, at the moment,
costs $99 a year, with separate programs for iOS and OS X. Thus, if you
register for both, you’ll pay $198 a year.

You can also register as a business. This registration allows you to build
teams of individual developers and share code among yourselves as you
develop apps.

http://developer.apple.com
http://developer.apple.com
http://appleid.apple.com

10

Part I: Getting Started with Swift

There are also programs for educational institutions. Make certain that you
have an Apple ID that you will use for your development, and then choose
your program. If you are working for a business or are enrolled in a school,
check to see if you are eligible to join a program there: It may save you
some money.

Planning Your Environment

Your development environment is centered around a Mac with Xcode
installed on it, but you can use several Macs for development. Each one
should have Xcode on it (see further topics in this section for a discussion of
multiple versions of Xcode). Because Xcode is free, it’s easy to install it on a
number of Macs. In fact, if you have access to a shared computer lab
(perhaps at school), Xcode may be a component that is part of the lab.

There are no special settings to use Xcode with Swift, except to choose Swift
(rather than Objective-C) from the pop-up menu when creating a new project
or file. You also need to download the latest Swift documentation and SDK,
but this is part of the standard installation process. If you are working with
an old version of Xcode, you may be better off downloading and installing a
new version of Xcode from scratch and proceeding from there. Your older
Xcode projects should be able to be opened (and automatically converted if
necessary) by the new Xcode.

Using source control

Source control is built into Xcode with both Git and Subversion. Because of
its architecture, Git is more closely integrated into Xcode than Subversion.

If you use one of these tools, you can easily store your source code in a
repository. If you make a practice of committing changes to your source code
repository on a regular basis (at the end of each work session perhaps, or
when a significant milestone has been achieved), you'll know that you can
download the project on demand.

Using source control means that no matter which Mac you find yourself
using, as long as you have a network (or Internet) connection, you can check
out the latest copy of the project (or a branch thereof), make your changes,
and then check your files back in. And the next time you want to work on it,
just check out the project on another computer and keep going.

