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Introduction

’ n June of 2014, one of the highlights of Apple’s Worldwide Developers
Conference (WWDC) was the announcement — a surprise to many attendees,
including the multitudes of developers watching the videos around the world —
of the development of a new language aimed at developers to use with iOS and
OS X devices. Called Swift, it was presented as the language of the future for
Apple’s developers, but it was made very clear that it would cooperate with the
existing basic development language — Objective-C. (In describing the ways
Swift and Objective-C would interact, Apple repeatedly used the phrase “mix and
match” — not only in the presentations at WWDC, but in other venues as well.)

Think about that date— Swift has only been around since June 2014: We'’re
all beginners with Swift.

About This Book

Swift For Dummies is a beginner’s introduction to Apple’s new programming lan-
guage. The book gets you started developing with Swift. You'll quickly see how

to create projects in Swift from the built-in templates that are part of the Xcode
development tool. From there, you delve into the features of the language, from the
basic to the advanced. Some of these features are unique to Swift whereas other,
possibly more familiar features were inherited from other programming languages.

Before we get started with Swift, consider these two points:

v+~ Apple has done this before, and they know how to do it. On both the
hardware and software sides, Apple has successfully managed transitions
to new technologies. Developers have sometimes cheered, sometimes
booed, and even sometimes not even noticed much difference, but
nonetheless, Apple has managed to bring them along to a new technology
that makes their lives easier and improves things for users.

v The languages are only part of the development environment for
Apple. When you develop apps for iOS or OS X, you use the Xcode
development tool (technically an Integrated Development Environment,
or IDE), the Cocoa or Cocoa Touch frameworks, and a programming
language — either Objective-C or Swift. What differentiates the iOS and
OS X development environment from most others is that the language is
only one-third of the overall environment, as well as the fact that a single
company (Apple) controls all of that environment.
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Conventions Used in This Book

Cocoa is the framework you use for developing Mac apps; Cocoa Touch is
the framework for iOS apps. Both have a common heritage and many similar
classes. In general, classes that start with NS are Cocoa classes, and classes
that start with UI are Cocoa Touch classes. Many Cocoa NS classes are also
used in Cocoa Touch, so you’ll find both types of classes in many of your
apps and in the sample code and templates.

Code examples in this book appear in a monospaced font so that they stand
out a bit better. Some non-syntax components appear in an italicized
monospaced font. (Thus, weatherConditions might be a variable, but
variable could be any variable you want to use.)

Like many languages, including Objective-C, Swift is case-sensitive, so please
enter the code that appears in this book exactly as it appears in the text. |
also use the standard Cocoa naming conventions — such as capitalizing class
names and leaving the names of methods and instance variables lowercase.

Note that all URLs in this book appear in a monospaced font as well. In accor-
dance with common usage, most URLs in this book include the subdomain
(such as www) at the beginning of many URLs except for addresses that don’t
require that component (such as developer.apple.com).

If you're ever uncertain about anything in the code, you can always look

at the source code on my website at www.northcountryconsulting.
com or the For Dummies website at www . dummies . com. From time to time,
I'll provide updates for the code there and post other things you might find
useful.

Foolish Assumptions

This book makes few assumptions about readers because Swift programmers
come from many backgrounds and with varying degrees of proficiency in
various languages. As to the future, however, there’s one simple assumption:
You want to create apps based on the Cocoa and Cocoa Touch frameworks,
and you want to do it in the simplest way possible.

Fittingly, then, this book is aimed at Cocoa and Cocoa Touch developers at
all stages of expertise, from those who’ve developed a multitude of App Store
apps to those who have only thought about developing an app . . . someday.


http://www.northcountryconsulting.com
http://www.northcountryconsulting.com
http://www.dummies.com

Introduction 3

[ also assume you have some Mac or i0S experience. If you have never

used a Mac or iOS device, you may find it hard to follow this book. I explain
advanced technical terms as they arise, but my assumption is that you know,
for example, what Settings (on iOS devices) and System Preferences

(on Macs are), and that similar concepts are familiar to you.

You must have access to a Mac that can run the current version of Xcode
(a free download from developer.apple.com). Without Xcode and the Mac

to run it on, you can’t experiment with the sample code.
WBER
\‘&
S Note that Xcode runs only on Macintosh computers running Mac OS X v10.9.4

(Mavericks) or later on a 64-bit Intel-based Mac.

Additionally, you must have Internet access. It’s very important to stress,
however, that I don’t mean “always-on” Internet access. I only mean that you
must at least have limited Internet access — so you can access the App Store,
for example, and connect with Apple’s developer.apple.comto download
software and upload apps.

Perhaps the most foolish assumption of all may be your own: that you can’t
learn Swift or the Cocoa and Cocoa Touch frameworks. You can, and this
book is designed to help you. Bear in mind that app development is not easy:
If it were, the App Store would have far more than just over a million apps.
It’s not easy, but you can do it.

lcons Used in This Book

W
This icon indicates a useful pointer that you shouldn’t skip.
¢MBER - . : . : .
O This icon represents a friendly reminder. It describes a vital point that

you should keep in mind while proceeding through a particular section of the
chapter.

This icon signifies that the accompanying explanation may be informative
(dare we say interesting?), but it isn’t essential to understanding Swift. Feel
free to skip past these tidbits if you like (though skipping while learning may
be tricky).

This icon alerts you to potential problems that you may encounter along the
way. Read and obey these blurbs to avoid trouble.


http://developer.apple.com
http://developer.apple.com
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Beyond the Book

Alot of extra content that you won't find in this book is available at www.
dummies . com. Go online to find the following:

v Source code for the examples in this book at

www.dummies.com/extras/swift

This book contains a lot of code, and you might not want to type it.

In fact, it’s probably better if you don’t type this code manually.
Fortunately, you can find the source code for this book on the Dummies.
com website at www.dummies.com/extras/swift. The source code
is organized by chapter. The best way to work with a chapter is to
download all the source code for it at one time.

v Online articles covering additional topics at

www . dummies.com/extras/swift

Here you'’ll find out how to know whether to use a type, collection, flow
control, or function to implement an action; how to initialize stored
properties in a class or structure; and how to let Xcode create actions
and outlets for you.

Ongoing discussions at developer.apple.con (for registered devel-
opers only) and at my website (www.northcountryconsulting.com)
provide even more information.

+* The Cheat Sheet for this book is at

www .dummies .com/cheatsheet/swift

Here you’ll find an examination of the anatomy of a Swift class, the best
way to update Xcode for a new Swift release, and advice about working
with both Swift and Objective-C.

v~ Updates to this book, if we have any, are also available at

www .dummies.com/extras/swift

Where to Go from Here

It’s time to start your Swift adventure! If you're new to programming, start
with Chapter 1 and progress through the book at a pace that allows you
to absorb as much of the material as possible. If you're in an absolute
rush to get going with Swift as quickly as possible, you could possibly skip
to Chapter 2 with the understanding that you may find some topics a bit
confusing later.


http://www.dummies.com/extras/swift
http://www.dummies.com/extras/swift
http://www.dummies.com/extras/swift
http://developer.apple.com
http://www.northcountryconsulting.com
http://www.dummies.com/cheatsheet/swift
http://www.dummies.com/extras/swift
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In this part . . .

Set up an Xcode Swift project.
Find out how to use a playground.
Explore the Xcode editing tools.

Write your first Swift app.




Chapter 1
Setting Up an Xcode Swift Project

In This Chapter
Introducing Swift
Setting up your computer for Swift
Defining your development preferences
Creating and exploring your first project

Swift is Apple’s new language for developers to use with i0OS and OS X
devices. As such, it is the successor to Apple’s existing i0S/0S X
development language, Objective-C, but Swift has been designed to cooperate
with and work alongside Objective-C, so this should be a slow transition

to power.

Some Swift beginners come to the language with proficiency in other
languages, ranging from C and its offshoots such as C++ and Objective-C,
to newer languages such as Ruby, Python, and Java, as well as scripting
languages such as PHP and JavaScript.

Whether you're just starting out as an Apple developer or are an experienced
developer who wants to add Swift to your skills, this chapter helps you get
started. There’s one very important point to remember: As of this writing,
the iOS API (application programming interface) and SDK (software develop-
ment kit) are less than ten years old. (They were launched in early 2008, six
months after the launch of iPhone.) The early years of iOS development were
an exciting period as the pieces of today’s hardware and software environ-
ment fell into place. Only as thousands of developers and millions of users
started actually using these devices and the languages that support them did
some issues — bugs as well as great enhancements — begin to take shape.

Arguably, it took several years for the SDK to reach maturity. Many
developers (including your humble author) believe that it was only with
the release of iOS 4 in 2010 that the platform more or less stabilized as the
operating system we recognize today. This was the first version to be called
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“i0S” rather than “iPhone OS,” and, with the release of iOS 4.2.1 in the fall of
2010, it was the first to support both iPhone and iPad. The first version of
multitasking was present, and preparations were made for iCloud that was
first released in iOS 5.

If you haven’t looked at iOS since that time, a lot has changed. The release
of Swift and iOS 8 is a good opportunity to look around and get up to date
with i0S (and, for that matter, OS X). This chapter helps you do that.

In this book, you'll occasionally find warnings like this one about serious
issues you should avoid. The warnings are used sparingly, so pay attention
to them when they appear. The focus in this book is on getting you up and
running as a Swift developer. That involves giving you the information you
need as well as helping you along the way with encouragement and, from
time to time, reminding you that you’re not the first person to learn Swift.
Others have been there before, and, in most cases, others (most definitely
including the author) have encountered the problems you may be facing.
There are a multitude of warnings in this chapter. This isn’t intended to scare
you off: Rather, it’s designed to help you over that first hump of becoming a
Swift developer. After you have your first clean compile and have finished a
build of a project (in the section, “Planning Your Environment,” later in this
chapter), you'll be on your way.

Looking Ahead to the End

As you make progress in Swift, this book helps you build an app — a real, live
app — based on one of the built-in Xcode templates. Sure, you're probably
thinking, that’s just what I need — another “Hello World” app.

Actually, no. There’s no “Hello World” here. Instead, the app you’ll be
building, called Locatapp, is a full-fledged Swift app created using the
Master-Detail Application template that’s built into Xcode, and it uses Cocoa
Touch and a number of its frameworks to do its work. Locatapp uses location
services on Cocoa Touch and the i0OS mobile devices to find your location,

as you see in Figure 1-1.

If you prefer, you can download Locatapp from this book’s companion
website, as described in the Introduction, but be warned — some of the
details of registering as a developer described later in this chapter are
needed to get Locatapp to run on your own device.

The pulsing blue dot shows your current location. Locatapp lets you store
other locations you’ve visited. The latitude and longitude values of locations
that have been visited are shown in the list at the left of Figure 1-1. Tap one
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|
Figure 1-1:
Locatapp
finds your
location.
|

|
Figure 1-2:
Zooming

the map.
|
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of them, and you’ll see a map with your current location and with the tapped
location indicated by a red pin.

You can zoom in on the map (see Figure 1-2). This zoom-in functionality is all
built into MapKit and the device so you don’t have to write any code. As you
zoom in, you can see that the two locations shown in Figure 1-1 are actually
over 100 miles apart. The annotation for Current Location is also part of

the framework.
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|
Figure 1-3:
Writing

your own
annotations.
|

In addition to the built-in annotation for Current Location, you can write
your own annotations in Locatapp. Figure 1-3 shows a custom annotation
that you’ll write in the course of this book.

That action button at the right of the bar in the interface (the box with the
arrow poking out of the top) is an interface element you can drag from the
Xcode library into your user interface (called a storyboard). What happens
when you tap that action button depends on a method you’ll build in this
book. This method uses the built-in actions such as Messages, Mail, Twitter,
Facebook, and so forth, as shown in Figure 1-4. (Yes, you'll write this code,
but Cocoa Touch writes the supporting code to interact with Messages,
Mail, Twitter, Facebook, and more.)

Figure 1-5 shows a tweet you can construct in your app. Users can modify
it (note that there are 57 characters left), but you write the code for the
message and to insert the map coordinates. Note, too, that the image of a
web page is part of the tweet. You'll see how to automatically put that into
the tweet. Although you can tap the image of the web page all you want in
this book, in Locatapp, tapping that image will take you to the web page

in Safari.

I'm sure you'll like Locatapp and enjoy thinking of ways you can build on it.

As I like to say, “Goodbye, ‘Hello World.””
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|
Figure 1-4:
Implementing
an action
button.
|

|
Figure 1-5:
Constructing
social media
messages
from your
code.
|

Cancel Twitter Post

I'm using Locatapp at latitude 43.088967 longitude 43.088967 [

Location

= - -
.-ASDFGHJ
SIS 2« o v e
B » @

Plattsburgh

Working with Swift

Apple has two annual calendars of events. Each is highlighted by one or
more major announcements with periodic updates throughout the year.
For consumers and end users, the annual calendar focuses on the releases
of new and updated devices. As is true throughout the world of electronics,
a large portion of annual sales occur during the summer and fall (“back-to-
school”) and during the year-end holiday season.

11
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On the software side, there is a related peak period. It’s no accident that
Apple, Google, and Microsoft all hold conferences for their developers in May
and June. Typically, they unveil the new features in their operating systems
at that time, allowing developers a few months to work with those features
before the peak period of hardware sales.

In June of 2014, one of the highlights of Apple’s Worldwide Developers
Conference (WWDC) was the announcement — a surprise to many
attendees — of a new development language for i0S and OS X devices.
Called Swift, it was presented as the language of the future for Apple’s
developers, but it was made very clear that it would co-operate with the
existing basic development language — Objective-C.

This book gets you started developing with Swift. You'll quickly see how to create
projects in Swift from the built-in templates that are part of the Xcode develop-
ment tool. From there, you'll delve into features of the languages ranging from the
basics to the advanced features that are unique to Swift as well as some features
of Swift that may be familiar to you from other modern programming languages.

Swift and Objective-C are the languages most often used in building apps for iOS
and OS X. Combined with the Cocoa (OS X) and Cocoa Touch (i0S) frameworks
and Xcode, these languages allow you to develop just about anything you can
dream of. It is hard to find an app that can’t be written with these tools: OS

X and iOS apps as well as other Apple products such as Pages, Keynote, and
Numbers are developed using Xcode and the Cocoa frameworks. Most of the
language work for these products is in Objective-C or Swift, although some sec-
tions are still in C++. Apps developed with these technologies are native apps.

If you don’t want to go the native route, you can consider using other
(non-Apple) frameworks. Three widely used frameworks are Titanium
Appcelerator, PhoneGap, and HTML5, which is frequently used as a develop-
ment tool without being a framework. In the world of Titanium Appcelerator,
you typically write in JavaScript, whereas in PhoneGap you use Javascript,
HTML, and CSS. HTMLS5, of course, is itself a language, which you can use in
conjunction with JavaScript as well as other languages.

The advantages of using these non-native frameworks center around two features:

v With these frameworks, the development process may be faster than
the native-app framework.

v Using these frameworks can help you develop cross-platform apps.
The biggest disadvantage is that non-native frameworks are third-party tools

and as such aren’t guaranteed to support new (or even all current) features
of Apple’s operating systems and hardware.
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The cost of developing a native app for i0S, OS X, Android, or even Windows is
likely to be significantly higher than that of using one of the tools listed here.
Before making a decision, you may want to explore tools such as FileMaker (a
wholly-owned subsidiary of Apple), which is designed for use by non-program-
mers. Originally a database application, FileMaker now has become a key tool
for people who may never write a line of code in their life but are comfortable
(and happy!) spending their time analyzing data and the processes that use it.
Give FileMaker a look — particularly if your app idea is data-related.

In terms of cost and difficulty, FileMaker is likely to be your best choice;
Titanium Appcelerator, PhoneGap, and HTML5 the second-best; and native
app development with Swift or Objective-C (or both) the third. In terms of
flexibility, however, this order would be reversed — the native apps are the
most flexible, and tools like FileMaker are the least.

If your goal is to “get an app deployed by next Tuesday,” FileMaker may be
your best bet (if it can be done at all). On the other hand, if your goal is to
build something that will last or — perhaps more importantly — something
that will develop your skills and expertise in this rapidly-growing mobile
world, native apps with iOS and OS X are usually the way to go.

Getting the Developer Tools

The tools you need to develop with Swift for iOS or OS X are simple:

v A Mac: Any current Mac has enough processor power and memory
to build apps. As of this writing, you must be running Mavericks
(0S X 10.9) or Yosemite (OS X 10.10).

v Xcode: Xcode is the integrated development environment (IDE) for building
OS X and iOS apps. You can download it for free from the Mac App Store.

These are the essentials: They're really all you need. However, a few additional
tools can be very helpful — even necessary for some developers — but if

you don’t have them, don’t worry about it. There are some workarounds and
compromises if you're missing these tools. They include:

v An iOS device (if you're developing for the iOS platform): It’s possible
to develop an iOS app with no hands-on experience, but the results
will show, particularly when you get reviews in the App Store along the
lines of, “Hasn’t the developer ever tried to use an iPhone?” Writing an
app based on an understanding of iOS devices gained from articles and
advertising is very difficult. It’s much easier if you have access to the
real thing. The one exception to this is when you’re working on only a
component of a larger app, one that doesn’t involve the user interface.
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” Internet access: If you only have intermittent Internet access, you can
still develop, but with limitations. Certain tasks, such as getting your
app into the App Store, require Internet access.

v~ Plenty of disk space and a robust backup mechanism, such as Time
Machine: “Plenty of disk space” can mean a large internal disk, one or
more external disks connected to your Mac, or cloud-based storage. The
backup mechanism is important because you need to be confident that
all of your project’s files are properly backed up and can be restored, if
necessary.

The Apple developer discussion boards (Apple Developer Forums, located
at https://devforums.apple.com) provide a valuable resource, as |
describe in the following section. Every few months, a plea for help shows
up on those boards that goes something like this: “How do I get my app
into the App Store? I've written it and now I have to get it into the App
Store.” (Such questions pop up in other places on the Internet as well.)
Native apps need to be written in Swift or Objective-C, and they must
abide by the rules of the App Store and the Mac App Store. Make certain
you understand this before you start work. Writing an app in Java, HTMLS5,
JavaScript, Objective-C without the Cocoa or Cocoa Touch framework, or
even COBOL counts only as a personal experiment with a user interface;
your app can’t be moved into the App Store. You may be able to distribute
it as an app-like website, but not as a native app. Along those lines, the
various commercial app development frameworks and services may or
may not be useful to you.

Setting Up Your Mac

This section provides a quick overview of setting up your Mac for development
in general and for Swift in particular. The basic steps are included here, and,
as you'll see, each one can open a variety of doors to additional steps and
information.

Registering as a developer

The basic developer tools are free, and you can start work immediately, but
Apple requires that you register as a developer at developer.apple.com
before you can access many of the tools and features that you'll need,
particularly for testing. More and more of the developer website is available
without logging in, but some of the key features require registration.
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Not only do you need to register, but in some areas of developer.apple.
com, you need to sign a non-disclosure agreement. You will be invited to
join a developer program, which may entail an annual fee (see the upcom-
ing section, “Choosing your program,” for more on this), but if you're on

a limited budget or just exploring, you can get quite a long way by saying
“No, Thanks” to the offers. Rejecting offers like these and surveying the site
is a good way to get your feet wet and get a good general understanding of
the environment — although it does not let you submit your apps to the
App Store.

The rules and policies of Apple’s developer programs change from time to time
and from country to country. Look at developer.apple. com for the latest
definitive information. Be particularly careful of web postings you find that
may be from the past. Always check the posting date from any articles you

rely on — and that includes articles from Apple on developer.apple.com.
You can usually find this date at the bottom of an article.

Preparing your credentials

For basic registration, you need to identify yourself to Apple. The standard
way of doing this is to provide an Apple ID. Your Apple ID is not confidential,
but your password is. Go to appleid.apple.com to register or to manage
your Apple ID (including changing your password, if you want).

You may have more than one Apple ID (and you may need to have more than
one, in some cases). Some developers have separate Apple IDs for personal
use in addition to ones used for development. You may have a different
Apple ID for developing apps than you have for developing iBooks — in fact,
at the moment, this is a requirement.

For more on this, see the section, “Planning Your Environment,” later in this
chapter.

Choosing your program

Apple offers a number of different developer programs in which you can
enroll. The simplest one is an individual program, which, at the moment,
costs $99 a year, with separate programs for iOS and OS X. Thus, if you
register for both, you’ll pay $198 a year.

You can also register as a business. This registration allows you to build
teams of individual developers and share code among yourselves as you
develop apps.


http://developer.apple.com
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There are also programs for educational institutions. Make certain that you
have an Apple ID that you will use for your development, and then choose
your program. If you are working for a business or are enrolled in a school,
check to see if you are eligible to join a program there: It may save you
some money.

Planning Your Environment

Your development environment is centered around a Mac with Xcode
installed on it, but you can use several Macs for development. Each one
should have Xcode on it (see further topics in this section for a discussion of
multiple versions of Xcode). Because Xcode is free, it’s easy to install it on a
number of Macs. In fact, if you have access to a shared computer lab
(perhaps at school), Xcode may be a component that is part of the lab.

There are no special settings to use Xcode with Swift, except to choose Swift
(rather than Objective-C) from the pop-up menu when creating a new project
or file. You also need to download the latest Swift documentation and SDK,
but this is part of the standard installation process. If you are working with
an old version of Xcode, you may be better off downloading and installing a
new version of Xcode from scratch and proceeding from there. Your older
Xcode projects should be able to be opened (and automatically converted if
necessary) by the new Xcode.

Using source control

Source control is built into Xcode with both Git and Subversion. Because of
its architecture, Git is more closely integrated into Xcode than Subversion.

If you use one of these tools, you can easily store your source code in a
repository. If you make a practice of committing changes to your source code
repository on a regular basis (at the end of each work session perhaps, or
when a significant milestone has been achieved), you'll know that you can
download the project on demand.

Using source control means that no matter which Mac you find yourself
using, as long as you have a network (or Internet) connection, you can check
out the latest copy of the project (or a branch thereof), make your changes,
and then check your files back in. And the next time you want to work on it,
just check out the project on another computer and keep going.



