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Introduction

alculus is the great Mount Everest of math. Most of the world is content to
just gaze upward at it in awe. But only a few brave souls attempt the ascent.

Or maybe not.

In recent years, calculus has become a required course not only for math,
engineering, and physics majors, but also for students of biology, economics,
psychology, nursing, and business. Law schools and MBA programs welcome
students who’ve taken calculus because it demonstrates discipline and clarity of
mind. High schools now have multiple math tracks that include calculus, from the
basic college prep track to the AP tracks that prepare students for the Advanced
Placement exam.

So perhaps calculus is more like a well-traveled Vermont mountain, with lots of
trails and camping spots, plus a big ski lodge on top. You may need some stamina
to conquer it, but with the right guide (this book, for example!), you’re not likely
to find yourself swallowed up by a snowstorm half a mile from the summit.

About This Book

You can learn calculus. That’s what this book is all about. In fact, as you read these
words, you may well already be a winner, having passed a course in Calculus I.
If so, then congratulations and a nice pat on the back are in order.

Having said that, I want to discuss a few rumors you may have heard about
Calculus II:

¥ Calculus Il'is harder than Calculus 1.
¥ Calculus Il is harder, even, than either Calculus Il or Differential Equations.

¥ Calculus Il is more frightening than having your home invaded by zombies in
the middle of the night and will result in emotional trauma requiring years of
costly psychotherapy to heal.
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Now, I admit that Calculus II is harder than Calculus I. Also, I may as well tell you
that many — but not all — math students find it to be harder than the two semes-
ters of math that follow. (Speaking personally, I found Calc II to be easier than
Differential Equations.) But I’'m holding my ground that the long-term psycho-
logical effects of a zombie attack far outweigh those awaiting you in any one-
semester math course.

The two main topics of Calculus II are integration and infinite series. Integration is
the inverse of differentiation, which you study in Calculus I. (For practical pur-
poses, integration is a method for finding the area of unusual geometric shapes.)
An infinite series is a sum of numbers that goes on forever, like1+2+3+...or
1 1 1

Sttt Roughly speaking, most teachers focus on integration for the first

two-thirds of the semester and infinite series for the last third.

This book gives you a solid introduction to what’s covered in a college course in
Calculus II. You can use it either for self-study or while enrolled in a Calculus II
course.

So feel free to jump around. Whenever I cover a topic that requires information
from earlier in the book, I refer you to that section in case you want to refresh
yourself on the basics.

Here are two pieces of advice for math students (remember them as you read the
book):

3 Study a little every day. | know that students face a great temptation to let
a book sit on the shelf until the night before an assignment is due. This is a
particularly poor approach for Calc Il. Math, like water, tends to seep in slowly
and swamp the unwary!

So, when you receive a homework assignment, read over every problem

as soon as you can and try to solve the easy ones. Go back to the harder
problems every day, even if it's just to reread and think about them. You'll
probably find that over time, even the most opaque problem starts to make
sense.

3 Use practice problems for practice. After you read through an example and
think you understand it, copy the problem down on paper, close the book,
and try to work it through. If you can get through it from beginning to end,
you're ready to move on. If not, go ahead and peek, but then try solving the
problem later without peeking. (Remember, on exams, no peeking is allowed!)

Calculus Il For Dummies



Conventions Used in This Book

Throughout the book, I use the following conventions:

¥ ltalicized text highlights new words and defined terms.

3 Boldfaced text indicates keywords in bulleted lists and the action parts of
numbered steps.

3 Monofont text highlights web addresses.

¥ Angles are measured in radians rather than degrees, unless | specifically state
otherwise. (See Chapter 2 for a discussion about the advantages of using
radians for measuring angles.)

What You're Not to Read

All authors believe that each word they write is pure gold, but you don’t have to
read every word in this book unless you really want to. You can skip over sidebars
(those gray shaded boxes) where I go off on a tangent, unless you find that tan-
gent interesting. Also feel free to pass by paragraphs labeled with the Technical
Stuff icon.

If you’re not taking a class where you’ll be tested and graded, you can skip para-
graphs labeled with the Tip icon and jump over extended step-by-step examples.
However, if you’re taking a class, read this material carefully and practice working
through examples on your own.

Foolish Assumptions

Not surprisingly, a lot of Calculus II builds on topics introduced in Calculus I and
Pre-Calculus. So here are the foolish assumptions I make about you as you begin
to read this book:

¥ Ifyou're a student in a Calculus Il course, | assume that you passed Calculus I.
(Even if you got a D-minus, your Calc | professor and | agree that you're
good to gol)

¥ If you're studying on your own, | assume that you're at least passably familiar
with some of the basics of Calculus I.

Introduction 3



I expect that you know some things from Calculus I, Algebra, and even Pre-
Algebra, but I don’t throw you in the deep end of the pool and expect you to swim
or drown. Chapter 2 contains a ton of useful Algebra and Pre-Algebra tidbits that
you may have missed the first time around. And in Chapter 3, I give you a review
of the most important topics from Calculus I that you’re sure to need in Calculus
II. Furthermore, throughout the book, whenever I introduce a topic that calls for
previous knowledge, I point you to an earlier chapter or section so you can get a
refresher.

Icons Used in This Book

TIP

©

REMEMBER

(= =)
T
TECHNICAL
STUFF

WARNING

EXAMPLE

Here are four useful icons to help you navigate your way through the book:

Tips are helpful hints that show you the easy way to get things done. Try them
out, especially if you’re taking a math course.

This icon points out key ideas that you need to know. Make sure you understand
these ideas before reading on.

This icon points out interesting trivia that you can read or skip over as you like.

Warnings flag common errors that you want to avoid. Get clear where these traps
are hiding so you don’t fall in.

Examples walk you through a particular math exercise designed to illustrate a
particular topic. Practice makes perfect!

Beyond the Book

4

In addition to the introduction you’re reading right now, this book comes with a
free, access-anywhere Cheat Sheet containing information worth remembering
about Calculus II. To get this Cheat Sheet, simply go to www.dummies . com and type
Calculus II For Dummies Cheat Sheet in the Search box.

Calculus Il For Dummies
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Where to Go from Here

You can use this book either for self-study or to help you survive and thrive in a
course in Calculus II.

If you’re taking a Calculus II course, you may be under pressure to complete a
homework assignment or study for an exam. In that case, feel free to skip right to
the topic that you need help with. Every section is self-contained, so you can jump
right in and use the book as a handy reference. And when I refer to information
that I discuss earlier in the book, I give you a brief review and a pointer to the
chapter or section where you can get more information if you need it.

If you’re studying on your own, I recommend that you begin with Chapter 1, where
I give you an overview of the entire book, and then read the chapters from begin-
ning to end. Jump over Chapters 2 and 3 if you feel confident about your grounding
in the math leading up to Calculus II. And, of course, if you’re dying to read about
a topic that’s later in the book, go for it! You can always drop back to an easier
chapter if you get lost.
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IN THIS PART ...

See Calculus Il as an ordered approach to finding the
area of unusual shapes on the xy-graph

Use the definite integral to clearly define an area
problem

Slice an irregularly shaped area into rectangles to
approximate area

Review the math you need from Pre-Algebra, Algebra,
Pre-Calculus, and Calculus |



IN THIS CHAPTER

» Measuring the area of shapes by
using classical and analytic geometry

» Using integration to frame the area
problem

» Approximating area using
Riemann sums

» Applying integration to more
complex problems

» Seeing how differential equations are
related to integrals

» Looking at sequences and series

Chapter 1

An Aerial View of the
Area Problem

umans have been measuring the area of shapes for thousands of years. One

practical use for this skill is measuring the area of a parcel of land.

Measuring the area of a square or a rectangle is simple, so land tends to get
divided into these shapes.

Discovering the area of a triangle, circle, or polygon is also relatively easy, but as
shapes get more unusual, measuring them gets harder. Although the Greeks were
familiar with the conic sections — parabolas, ellipses, and hyperbolas — they
couldn’t reliably measure shapes with edges based on these figures.

René Descartes’s invention of analytic geometry — studying lines and curves as
equations plotted on the xy-graph — brought great insight into the relationships
among the conic sections. But even analytic geometry didn’t answer the question
of how to measure the area inside a shape that includes a curve.

CHAPTER 1 An Aerial View of the Area Problem 9



This bit of mathematical history is interesting in its own right, but I tell the story
in order to give you, the reader, a sense of what drove those who came up with the
concepts that eventually got bundled together as part of a standard Calculus II
course. I start out by showing you how integral calculus (integration for short) was
developed from attempts to answer this basic question of measuring the area of
weird shapes, called the area problem. To do this, you will discover how to approx-
imate the area under a parabola on the xy-graph in ways that lead to an ordered
system of measuring the exact area under any function.

First, I frame the problem using a tool from calculus called the definite integral.
I show you how to use the definite integral to define the areas of shapes you
already know how to measure, such as circles, squares, and triangles.

With this introduction to the definite integral, you’re ready to look at the practi-
calities of measuring area. The key to approximating an area that you don’t know
how to measure is to slice it into shapes that you do know how to measure — for
example, rectangles. This process of slicing unruly shapes into nice, crisp
rectangles — called finding a Riemann sum — provides the basis for calculating
the exact value of a definite integral.

At the end of this chapter, I give you a glimpse into the more advanced topics in a
basic Calculus II course, such as finding volume of unusual solids, looking at some
basic differential equations, and understanding infinite series.

Checking Out the Area

10

Finding the area of certain basic shapes — squares, rectangles, triangles, and
circles — is easy using geometric formulas you typically learn in a geometry class.
But a reliable method for finding the exact area of shapes containing more esoteric
curves eluded mathematicians for centuries. In this section, I give you the basics
of how this problem, called the area problem, is formulated in terms of a new con-
cept, the definite integral.

The definite integral represents the area of a region bounded by the graph of a
function, the x-axis, and two vertical lines located at the bounds of integration.
Without getting too deep into the computational methods of integration, Igive
you the basics of how to state the area problem formally in terms of the definite
integral.

PART 1 Introduction to Integration



FIGURE 1-1:
Formulas for
the area of a

rectangle,
a triangle, and
acircle.

Comparing classical and analytic geometry

In classical geometry, you discover a variety of simple formulas for finding the area
of different shapes. For example, Figure 1-1 shows the formulas for the area of a
rectangle, a triangle, and a circle.

height =2
height=1
width =1 base =1
Area = width - height = 2 Area =w=% Area = - radius? =7

On the xy-graph, you can generalize the problem of finding area to measure the
area under any continuous function of x. To illustrate how this works, the shaded
region in Figure 1-2 shows the area under the function f(x) between the vertical
linesx =aand x = b.

The area problem is all about finding the area under a continuous function between

two constant values of x that are called the bounds of integration, usually denoted
by a and b. This problem is generalized as follows:

b
Area = [(x) dx

WISDOM OF THE ANCIENTS

Long before calculus was invented, the ancient Greek mathematician Archimedes used
his method of exhaustion to calculate the exact area of a segment of a parabola. He was
also the first mathematician to come up with an approximation for 7 (pi) within about a
0.2% margin of error.

Indian mathematicians also developed quadrature methods for some difficult shapes
before Europeans began their investigations in the 17th century.

These methods anticipated some of the methods of calculus. But before calculus, no
single theory could measure the area under arbitrary curves.
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FIGURE 1-2:
A typical area
problem.

REMEMBER

y=f(x)

PV (N1

b
Area=[ f(x) dx

In a sense, this formula for the shaded area isn’t much different from the geometric
formulas you already know. It’s just a formula, which means that if you plug in the
right numbers and calculate, you get the right answer.

For example, suppose you want to measure the area under the function x*between
x = 1and x = 5. (You can see what this area looks like by flipping a few pages for-
ward to Figure 1-5.) Here’s how you plug these values into the area formula shown
previously:

5
Area = _[x2 dx
1

The catch, however, is how exactly to calculate using this new symbol. As you may
have figured out, the answer is on the cover of this book: calculus. To be more
specific, integral calculus, or integration.

Most typical Calculus II courses taught at your friendly neighborhood college or
university focus on integration — the study of how to solve the area problem. So,
if what you’re studying starts to get confusing (and to be honest, you probably will
get confused somewhere along the way), try to relate what you’re doing to this
central question: “How does what I’'m working on help me find the area under a
function?”

Finding definite answers with
the definite integral

You may be surprised to find out that you’ve known how to integrate some func-
tions for years without even knowing it. (Yes, you can know something without
knowing that you know it.)

PART 1 Introduction to Integration



FIGURE 1-3:

The rectangular
area under the
function f(x) = 2,
betweena =1
andb=4
equals 6.

For example, find the rectangular area under the function y = 2 between x = 1 and
X = 4, as shown in Figure 1-3.

n
Area =1I 2 dx

This is just a rectangle with a base of 3 and a height of 2, so its area is 6. But this
is also an area problem that can be stated in terms of integration as follows:

Area = f142 dx =6

As you can see, the function I’m integrating here is f(x) = 2. The bounds of inte-
gration are 1 and 4 (notice that the greater value goes on top). You already know
that the area is 6, so you can solve this calculus problem without resorting to any
scary or hairy methods. But you’re still integrating, so please pat yourself on the
back, because I can’t quite reach it from here.

The following expression is called a definite integral:
['2dx

For now, don’t spend too much time worrying about the deeper meaning behind
the _[ symbol or the dx (which you may fondly remember from your days spent

differentiating in Calculus I). Just think of J' and dx as notation placed around a
function — notation that means area.

What’s so definite about a definite integral? Two things, really:

¥ You definitely know the bounds of integration (in this case, 1 and 4). Their
presence distinguishes a definite integral from an indefinite integral, which
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FIGURE 1-4:
The triangular
area under the
functiony = x,
between x=0
and x=8
equals 32.

you find out about in Chapter 5. Definite integrals always include the bounds
of integration; indefinite integrals never include them.

¥ A definite integral definitely equals a number (assuming that its limits of
integration are also numbers). This number may be simple to find or diffi-
cult enough to require a room full of math professors scribbling away with
#2 pencils. But, at the end of the day, a number is just a number. And,
because a definite integral is a measurement of area, you should expect
the answer to be a number.

When the limits of integration aren’t numbers, a definite integral doesn’t neces-
sarily equal a number. For example, expressions such as k and 2k might be used as
limits of integration to stand in for constants. In such cases, the answer to a defi-
nite integral may include the letter k. Similarly, a definite integral whose limits of
integration are sin 6 and 2 sin 8 would most likely equal a trig expression that
includes 6. To sum up, because a definite integral represents an area, it always
equals a number — though you may or may not be able to compute this number.

As another example, find the triangular area under the function y = x, between
x = 0 and x = 8, as shown in Figure 1-4.

This time, the shape of the shaded area is a triangle with a base of 8 and a height
of 8, so its area is 32 (because the area of a triangle is half the base times the
height). But again, this is an area problem that can be stated in terms of integra-
tion as follows:

Area:_[:x dx =32

8
Area =0f x dx
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