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Some Applications of Functional Equations and Inequalities

to Information Measures

by

J. Aczel, University of Waterloo, Waterloo, Ont., Canada

N
L tet Ty = Loy p)] [ o= 1opy 2 00 k2 1,2,

be the set of all complete finite discrete probability distributions
(e.g. the probabilities of different outcomes of an experiment, contents
of a communication, etc.) with N members (N = 2,3,...). C. E. Shannon

(1948) has introduced the "Shannon entropy" (with the understanding 0 log 0 := 0)

N
(1) HN(pl,pz,...,pN):= —kzlpklogzpk for all (pl,pz,...,pN) € FN’ n=2,3,..,

as measure of uncertainty (before the experiment was made, the message
received etc.) or, equivalently, of information (received from the completed
experiment, communication, etc.). What justifies the formula (1) and some
further measures of uncertainty and information?

In this lecture we summarize some older and newer results in this
direction with some proofs indicated. Detailed proofs (and more results)

will be available in the book J. Aczel Z. Daréczy 1971.

2. One justification of (1) lies in coding theory (see e.g.
A. Feinstein 1958). There we have a finite set X of messages (letters) to
which finite sequences (codewords) of elements of a finite set A of symbols

are bijectively associated. Such a mapping is a uniquely decodable code

S(X, A). For every such code, the average length of a codeword is

HN(PerZ)"UPN)

N
(2) ] pon, 2
k
k=1 B log,D
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where N = IX[, D= |4, Py is the probability of the message X € X, and

n is the length of the codeword associated top X (k =1,2,...,N). On the

other hand, there exists a code S*(X, A) for which the average length of

a codeword is

HN(pl ,st oo sPN)

N
(3) Z p n} < ———————— + 1.
kel k'k log2 D

If we permit L-tuples of messages (letters) to be encoded and take the

1
T 2 L P(}-()nx
xeX -

average length of codewords per messages, then (3) can be improved in the

following way. For arbitrary small € > 0 there exists a code S*(X,A),

such that

H.N(pl sts eee ,PN)

(4) P(x)n* < ——————— + ¢ .
§ZXL -

[l ]

log D

The proof of the first statement (2) is based upon Kraft's

inequality

and upon Shannon's inequality
N N
(5) HN(P]_'PZ’ oo ’PN) = _kzlpklog Py < "kzlpklog RN

for all (pl,pz,...,pN)an, (ql,qz,...,qN)ePN, q, > 0, k=1,2,...,N,

N N

(Jp,= La =1,p >0,q >0, k=1,2,...,N).
T b k k

The second statement (3) is proved by choosing ni as the (only) integer

in the interval
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log Pk log pk

- log D ’ 1log D

+1) (k=1,2,...,N),

and the third statement (4) follows from (3) and from an important property
of the entropy, viz. additivity, to which we come back in a moment.
In other words, a combination of (2) and (4) means that the

only solution of the inequality

I(p;sPyseessPy) I(pysPosesesPy)
1’72 N 1 1°72? N
* L .. A —_ * —tt———
ve g{ng} ) log D < L XZXL P(§)n§ < log D te

is
I(P1’P2’---,PN) = HN(PlaP2s""PN)'

The inequalities (2), (3) and (4), of course, give an excellent
justification for the formula (1) (although they are based upon a particular
way of averaging). So does the similar formula of thermodynamical entropy.
These are the two origions of the probabilistic entropy concept.

However, the applications of entropy go farther than that. Also,

in some applications, instead of (1), the entropies of order o
1 N o
(6) (XHN(pl’pZ’“.’pN) = 1’_& logkzlpk, (G # 1; -(Pl,sz---aPN)JNa N = 2)3)“-)

introduced by M. P. Schutzenberger (1954), S. Kullback (1959) and A. Rényi
(1960, 1965), are used instead of (1) (these too can be characterized by

coding theorems, see e.g. L. L. Campbell 1966). Notice that lim HN = HN,
o>l ¢

so the Shannon entropy can be considered as an entropy of order 1:

1By (PaPgaeoBy) 1= Hy(pyspysenespy)  ((Ppapyseenspy) € Ty No= 2,3,000).

Thus it is important to investigate the properties of all these

entropies (some of which make the above applications possible) and the
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question, which of these properties characterize them. In this way

we can justify their use and also select in which applications which to use.

3. Some of the most important properties of the Shannon entropy
(1) are the following (cf. J. Aczél 1968). We write here IN instead of

HN, since later we want to find all expressions satisfying these properties.

1. Algebraic Properties

(7) N-Symmetry: IN is a symmetric function of PpsPgseeesPys
or generally,

(8) Symmetry: All IN (N = 2,3,...) are symmetric functions.

fon: 1 1,
(9) Normalization: 12(2, 2) =1,
more generally,

1 .1

(10) IN(N,...,N) = log N.

(11) Expansibility: IN+l(p1,p2,...,pN,0) = IN(pl’pZ""’PN) for all

(pl,pz,...,pN) € PN’ N =2,3,..., (this is satisfied for (1) if we
agree upon 0 log 0 := 0 and for (6) also in the case a < 0,
if Oa := 0; or can serve as definition for the value of

HN(pl,pz,...,pN) and aHN(pl’pZ""’pN) (¢ € 0) if one - or more - of

the p, are 0).

(12) Decisivity: 12(1, 0) =0,
(cf. the remark after (11)).

(13) (M, N)-Additivity: IMN(plql,plqz,...,pqu,pqu,quz,'-~,P2qN,
v e sPydysPydps e+ sPyly) = Ly(PyaPgseresby) + Iy(415dpse-say)
((pyspgsevespy) € Ty (a15d9se05ay) € Ty,

or generally,

(14) Additivity: (13) holds for all M, N = 2,3,...
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(15) N-Recursivity: IN(pl,pz,p3,...,pN) = IN_l(pl+p2,p3,...,pN) +

+ (p1+P2)I2( ), ((pysPys+espy) € Tygs Py + 9y > 0),

P +P
or generally,

(16)  Recursivity: (15) holds for all N = 3,4,... ,
Even more generally,

(17)  Branching Property: There exist functions J3, JA"" such that

IN(p19P29P3"":pN) = IN_l(Pl+P21P3,--~aPN) = JN(PI’PZ),

for all (pl*pZ”"’pN) € FN’ N = 3,4,...

2. Representations

(18) Sum: There exists a function g, measurable in (0, 1), with

g(1) = 0, such that IN(pl,pZ,...,PN) = kzlg(pk)’
(plspzs'-'sPN) € FN; N = 2,3,...).

(19) Quasilinearity: There exists a continuous and strictly monotonic

N
_ + -l )
function Y or R such that IN(pl,pz,...,pN) = [kzlpkw( log2 pk)]

((pl,pz,.,.,pN) € PN’ Py >0; k=1,2,...,N; N =2,3,...).

3. Inequalities

(20) Nonnegativity: Iz(l—q, q) 2 0 for all q ¢ [0, 1].

1
(21) Maximality: IN(pl’p2" ) < 1 ( N’ cees N) = log2 N

for all (pl’pZ""’pN) € FN’ N = 2,3,...) (the last equality comes

from (10)).

(22)  Subadditivity: IMN(pll’pIZ""’plN’p2l’p22""'pZN""’le’pM2""’pMN) <
) j i z I

ST (] Pyps L Pyps voes L Pyg) + L Pips pz,-.-. Pay)
RACNEEIEACS k=1 0 Ny j j=1 3

((pu,...,pMN) e Tyys MuN = 2,3,...).
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N
(23) Shannon-Inequality: IN(pl’pZ""’pN) < —kzlpk log qi

N N

(Jp= Ja =1; p >0, q >0; k=1,2,...,8), (cf. (5)).
LT L k k

4. Regularity

(24) Smallness for small probabilities: lim I2(l-q, q) = 0.
g0+

(25) Boundedness from above: There exists a k > 1, such that
Iz(l-q, q) < k for all q ¢ [0, 1].

(26) Analyticity: q » IN(p(leq), Pd> Pys e pN) are analytic in (0, 1),
N = 2,3,...).

(27) Measurability: f = (q -+ Iz(l-q, q)) is measurable in (0, 1).

As hinted earlier also the entropies of order a # 1 have most
of these properties, - all but (22), (18), (17) [and (16), (15)]. However,

(24) and (25) hold only if a > 0.

4. We mention here the following characterization results, the
first three based on the (16)-recursivity.

Generalizing theorems of A. I. Khinchin (1953) and D. K. Faddeev
(1956; cf. A. Feinstein 1958), Z. Dardczy (1969; cf. R. Borges 1967)
have proved the following result.

Theorem 1.  Iff {IN} is (7) 3-symmetric, (9) normalized,

(16) recursive and (24) small for small probabilities, then

(28) IN(pl’pZ"”’pN) z HN(pl’pZ""’pN) for all (pl,pz,...,pN)sFN, N=2,3,...

The proof first shows that (7) 3-symmetry, (9) normalization and

(15) 3-recursivity imply that
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(29) f=(q~ 1, q)
satisfies the functional equations and boundary conditions

£) + (10 = £0) + (1-y)f(f_‘—y) whenever x, y < [0,1), x+y < 1
(30) 1
f(l-x) = £(x) (x € [0, 1]), £(1) =0, fCE) = 1.

Functions satisfying (30) are called information functions. With aid

of the information function (29) one gets from the (16) recursivity

N P
k
(31) T (pysPosceesPy) = L (py + Py + ovn + p V().
N1°F2 N k=2 1 2 k pl+p2+...+pk
Then one proves that the arithmetical function
¢(1) =0,

N
1 1
(32) ¢=@W-% JKEE); N=1,2,...) i.e.{
Vier K DD = Gy 3 oees By (R2,3,0

is completely additive:
(33) O(MN) = ¢(M) + o(N) for all M, N = 1,2,... .

Then, (24), (30), and a particular case of the Lemma 1 below
gives
(36)  ¢() = log, N (n=1,2,...).
from which one deduces, by applying (30) and (31), that
(35) f(r) = -r log, T - (l-r)logz(l—r)
for all rational r € [0, 1]. Then from (30) and (24) one deduces the
continuity of f, thus extending (35) to all reals in [0, 1]. But this
means

L, (pyspy) = Hy(py5py)

and then the (16) recursivity finishes the proof.
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This last step and the steps (29)-(33) are used also in the
proofs of the next two theorems.

The following result is due to P. M. Lee (1964) and generalizes
results of H. Tverberg (1958) and D. G. Kendall (1963, cf. R. Borges 1967).

Theorem 2. Iff {I.} is (7) 3-symmetric, (9) normalized,

(16) recursive and (27) measurable, then (28) holds.

In the proof of this theorem, beyond the steps common with the
proof of Theorem 1, one has to prove (which is not quite easy) that there
exists a nonvanishing interval on which f (as defined by (29)) is bounded
and then that this holds on every closed subinterval of (0, 1) so f is
Lebesgue integrable on these intervals. Then, integrating (30) with

respect to x over [a, b] (0 <y < y+a < y+b < 1), we get

b ¥/ (1=b) _, 5 b/ (1-y)
(b-a)f(y) = faf(x)dx +y [ xE@dx - (.)° [ f(x)dx.
y/(1-a) a/(1-y)

Thus f is continuous and the proof can be finished without
difficulty.
Finally, the following result is due to Z. Dardczy and I. Kitai

(1969) (on basis of Theorem 5 we have dropped one of their assumptions).

Theorem 3. TIff {IN} is (7) 3-symmetric, (9) normalized,

(16) recursive, and (20) nonnegative, then (28) holds.

The proof proceeds to (33), as for Theorem 1, then makes use
of the following lemma (P. Erdos 1958, I. Katai 1967).

Lemma 1. Iff a (13) completely additive number theoretical

function satisfies

lim inf[¢(N+1) - ¢(N)] > O,
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then there exists a constant c such that
o(N) = ¢ log2 N N =1,2,3,...).

Again, (30) implies ¢ = 1 and (35). By another nontrivial
application of (30), f can be proved continuous, and from there
on the proof goes again as that of Theorem 1.

Recently, B. Jessen, J. Karpf and A. Thorup (1968) have proved
the following theorem.

Theorem 4. The general solution of the system

F(a, b) = F(b, a)y
F(a, b) + F(a+ b, c) = F(b, c) + F(a, b + ¢)
F(ac, bc) = cF(a, b)

(a, b, c ¢ R+) of functional equations is of the form

F(x, y) = ¢(x +y) - ¢(x) - ¢(y),

where ¢ satisfies the functional equation

d(xy) = yo(x) + x¢(y).

If we define f and F by
f(x) = F(1-x, x)
and
PG, y) = (& DG,
respectively, we see that the system of functional equations in Theorem 4

is equivalent to

) = £ and () + A0EGED) = £ + £

from (30)and with L = (x + ¢(x)/x); (x > 0) we get the following general

theorem.
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Theorem 5. All solutions of (30) are of the form

f(x) = -xL(x) - (1-x)L(1-x)  (convention: OL(0) = 0, if necessary),
where L satisfies

L(xy) = L(x) + L(y), L(2) = 1.

Theorems 1-3 are consequences (essentially) of Theorem 5, but

the tools for the proof of Theorem 4 are rather intricate.

5. With respect to the branching property (17), the following

holds (generalizing results of B. Forte - Z. Darbczy 1968, Z. Dardczy 1970).

Theorem 6.  Iff {IN} is (7) 4-symmetric, (9) normalized,

(11) expansible, (13) (2,3)-additive, (17) branching, and (20) nonnegative,

then (28) holds.
The proof of this theorem first derives the (2,2)-additivity
from the (2,3)-additivity and from the (11) expansibility. Then from these

and from (20)

( ) = ( ) (‘*’El“‘ "‘E;“—
I (pspy) = (py + 9,01, ,
N¥1°72 1 2°72 P + P, " Py + Py

) (N =3,4,...50¢< p1+p2 < 1)
follows, that is, {IN} is (16) recursive and thus the proof of Theorem 6
is reduced to that of Theorem 3.

The (17) branching property can also be considered as a
representation, in particular the (18) sum representation implies that
(17) is satisfied with JN(pl’pZ) = g(pl) + g(pz) - g(pl + pz)-

As to the (18) sum representation, generalizing previous

results by T. W. Chaundy - J. B. McLeod (1960) and J. Aczél - Z. Dardczy

(19634), Z. Daroczy (1970) has proved the following.
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Theorem 7. Iff {IN} has the (18) sum-representation, is

(13) (2,3)-additive, and (9) normalized, then (28) holds.

The proof uses similar tools as that of Theorem 6.
If we restrict ourselves to (0, 1), then we can take in

N
(18) g(p) = ph(p), and we have IN(pl’PZ""’pN) = klekh(pk), in particular

on the lefthand side of the (23) Shannon-inequality. If we write also
the righthand side similarly, we can ask the question, which are the
functions h for which

N N
(36) kflpkh(pk) < I ph(@)  ((papyreeespy) € Ty (@g,05000050) My
= k=1

P, >0, q > 05 k=1,2,...,N).

The following theorem is due to P. Fischer (1970; cf. also
J. McCarthy 1956, where a slightly misstated similar result is mentioned),
who has generalized a result of J. Aczél - J. Pfanzagl (1966).

Theorem 8. The inequality (36) holds for a fixed N > 3 iff

(37) h(p) = c log p+b for all p e (0, 1)

where ¢ < 0, b are constants, that is, iff up to an additive and a multiplicative

constant, the lefthand side of (36) is the Shannon entropy HN(pl,pz,...,pN)

(For N = 2 the theorem is not true, see J. Marschak 1959,
J. Aczel - J. Pfanzagl 1966).
The proof (essentially due to A. Rényi, unpublished) first derives

from (36)
(38) pl[h(ql) - h(pl)] 2 p,[h(p,) - h(q,)]

for all py, py» qps G, for which p; >0, p) >0, q >0, gy > 0,
Pty =q ta, < 1. From (38) it follows that h is non-increasing,

thus differentiable almost everywhere. The inequality (38) implies
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also that
(39) ph'(p) = ¢ (constant)

in the points where h is known to be differentiable and in the remaining

points for the Dini numbers the inequalities
c < pD_h(p) < pD h(p) < c < pD h(p) < pD'h(p) < c
hold, thus h is differentiable and (39) holds everywhere. This gives (37)

and concludes the proof.

6. The entropies of order o > 0 are characterized by the following

theorem of Z. Dardczy (1964) which generalizes a previous result of J. Aczél
and Z. Dardczy (1963A) and is stated here in a form given by J. Aczél
and Z. Daréczy (1963B).

Theorem 9.  Iff {IN} is (14) additive, (19) quasilinear and

(24) small for small probabilities, then there exists am o > 0 such that

IN(pl’pZ""’pN) = aHN(Pl’pZ""’pN) for all (pl,pz,...,pn) € FN’ N=2,3,...

1, the Shannon entropy).

(including, for o

The proof is based on two lemmas.

Lemma 2. The equality

13 -1 %‘
(40) o1 ¢(-log,q, )] = ¥ [ ) q¥(-log, )],
kzlqk 2% ok 2 %

+ X
where ¢, U are continuous, strictly monotonic on R and 0(27) as x >,

holds for all (ql,qz,...,qN) € PN’ q > 0; k=1,2,...,N; n = 2,3,..., iff

(1) o=A)+B on R =[0, =

(A 20, B are constants).
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If we put (19) and p, = (5= 1,2,...,M) dnto (14) [cf. (3],
then we get an equality of the form (40) with ¢(x) = Y(x - log M), so, by (41)
(42) Yx - log, M) = AM)Y(x) + B(M) (x e [0, ®), M=1,2,...)

and we apply the following lemma in order to conclude the proof of Theorem 7.

Lemma 3. All continuous, strictly monotonic and 0(2%) (for

X + ©) solutions of (42) are for all x € R+ either of the form

ax + b

V(x)
or of the form
V(x) = a2 (0% Ly (0>0, o#l)

(a # 0, b constants).

7. The characterization of the Shannon entropy and even more
80 that of the Rényi entropies is simpler if also incomplete finite discrete

N

probability distributions (pl,pz,...,pN), for which 0 < z Py <1
k=1

(p, 20, k=1,2,...,N; N=1,2,3,...), are admitted (cf. A. Rényi 1960,
Py

Z. Darbczy 1963, J. Aczél 1964). Then

N N

1
(PysPoseespy) = 7= log,( I p, / [p) (a#1),
oy (ProPyreePy) = 1g 2k__z_1k LPx

N N
1H~N(P11P2s“-:PN) = HN(PI’PT---’PN) = -kzlkang pk / kzlpk'

Both these contain the entropy of a single event Hl(p) = GlHl(p) = -log p

(p € [0, 11) (cf. A. Rényi 1960).
The Shannon inequality (5) can also be written as

o, 1og X
p, log — 2 0.
k=1 K 9
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The left-hand side (cf. S. Kullback 1959) and the more general expression
N q
L Py log r_k
k=1 k

for three probability distributions (pl’pZ""’pN)’ (ql’qz""’qN)’

(rl,rz,...,rN) are sometimes called directed divergences. These and their
analogues of order o and for incomplete distributions were characterized
e.g. by P. Nath (1970) and J. Aczél - P. Nath (1971).

Another direction of research is that of nonprobabilistic
information measures (e.g. B. Forte - N. Pintacuda 1968), but this will

be the subject of talks by J. Kampé de Feriet and B. Forte.

A summary of this lecture was given at the Meeting on

Information Measures, Kitchener-Waterloo, Ont., Canada, on April 10, 1970.
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In these lectures we are concerned with regularity
theorems for functional equations and with some specific
examples. For simplicity we consider functions defined in
the real p-dimensional Euclidean space RP with values in a
Banach space X although most of the results are known in a
more general setting.

If x = (xy...,xp) ¢ RP then Ix|

"
—~
™
—
+
+
™

m

B}, - A= 1-x DX € A}

and, if a € Rp, A+ a ={x + a: xe€eA }. We let m denote the

1f A, BcRP then A+ B =[xty : x € A, y

p-dimensional Lebesgue measure on RP. In what follows, X is

a Banach space with the norm of x e X denoted by Ix]l.
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REGULARITY THEOREMS

Let us begin by considering the Cauchy functional

equation

f(xty) = £(x) + £(y).

A real valued function of a real variable satisfying this

equation for all real x and y will be called an additive

function. It is well known that if an additive function f

is continuous at a point, or bounded on an open set, then it

is continuous everywhere and there is a real constant a such

that f(x) = ax for all real x. (See Aczél [1] page 34).

M. Fréchet [5] was among the first to prove that a Lebesgue

measurable additive function is continous. More generally

Ostrowski [16] has shown that if an additive function is

bounded on one side on a set of positive Lebesgue measure

then it is continuous.

To prove this last statement, suppose f is an

additive function that is bounded above by M on a set A of
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positive Lebesgue measure. Then f is bounded above on A + A
by 2M. It can be shown (e.g. [7] page 296) that A + A contains
and open set, say U. If a ¢ U then f is bounded above on
V=-a+Uby f(-a) + 2M. Since V is a neighborhood of 0 and
f(-x) = -f(x) for all real x, f is bounded below on -V. Thus
f is bounded on the open set V n -V and is thus continuous.

Now, if a real function is Lebesgue measurable on
a set of positive Lebesgue measure, it is certainly bounded on
some set of positive Lebesgue measure. Hence, the theorem of
Ostrowski immediately implies that an additive function which
is measurable on a set of positive Lebesgue measure is
continuous.

Regularity theorems of the type "boundedness implies
continuity" have been proved by Kurepa [12] for the quadratic
functional equation

f(x+y) + f(x-y) = 2f(x) + 2£f(y)

and for more general equations by Kemperman [11].



