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STOCHASTIC PROCESSES AND STOCHASTIC DIFFERENTIAL EQUATIONS
C. Doléans-Dade

University of Illinois, Urbana

Introduction. Since Ito has defined the stochastic integral with respect

to the Brownian motion, mathematicians have tried to generalize it. The
first step consisted of replacing the Brownian motion by a square integrable
martingale. Later H. Kunita and S. Watanabe in [10] introduced the concept
of local continuous martingale and stochastic integral with respect to
local continuous martingales which P. 4. Meyer generalized to the noa
continuous case.

But in many cases one observes a certain process X and there are
at least two laws P and Q on (Q,Ep. For the law Q, X is not a local
martingale but the sum of a local martingale and a process with finite
variation. We would like to talk about the stochastic integrals f¢;dXs
and fquxs in thc two probability spaces (Q,F,P) and (Q,i,Q).P And of
coursg we would like those two stochastic integrals to be the same.

This is why one should try to integrate with respect to semi-
martingales (sums of a local martingale and a process with finite variation),
and this is what people have been doing for awhile (see chapters 5 and 6).
Now the latest result in the theory is "one cannot integrate with respect
to anything more general than semimartingales" (see chapter 3). Sc as it
stands now the theory looks complete.

To end this introduction I wish to thank Professor J. P.Cecconi and



the C.I.M.E. for their kind invitation to this session on differential
stochastic equations in Cortona; the two weeks of which I, and my family,

found most enjoyable.



STOPPING TIMES AND STOCHASTIC PROCESSES

We shall list in this chapter some definitions and properties on
stopping times and stochastic processes. The proofs can be found in [1] or
[2].

In all that follows (Q,F,P) is a given complete probability

space and (ﬁt)t*o a family of sub-o-fields of F verifying the "usual"

following properties

a) the family (Et)t>0 is non decreasing and continuous on the
right -

b) for each t, Et contains all the P-null sets of L (a P-null
set is a set of P-measure zero).
The o-fields Et should be thought of as the o-field of the events which
occurred up to time t.

We will sonctires consider other probabilities Q on the measur-
able space (2,F). But we shall always assume that the probabilities P
and Q are equivaleat (i.e. they have the same null sets); and the family

(ﬁt) will still satlsfy the "usual" conditions relatively to the probabil-

ity Q.

STOPPING TIMES

Suppose a gaabler decides to stop Playing when a certain phenomenon

has occured in the gaze. let T be the time ar which he will stop playing.
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The event {T < t} will depend only on the observations of the gambler
up to time t. This remark leads to the natural following definitionm.

1.1. Definition. A non negative random variable T is a stopping time if

< .
for every t Z.O the event {T __t} is in E& (We allow the random

variable T to take the value +x)

1.2, Properties of stopping times:

1) 4if S and T are two stopping times so are SvT, SAT and
S+T
2) if Sn is a monotone sequence of stopping times, the limit

T = 1im S is also a stopping time.
n++ow
1.3. The o-field ET' If T is a stopping time, ET is the family of all

the events A € F =\{§t, such that for every t > 0 the event

AN{T <t} E€F.

It is easy to check that Ep 1s a o-field; it is intuitevely the

o-field of 211 the events that occurred up to time T. In particular, if

T 1is the constant stopping time t, F_ =TF ; if S and T are two

=T =t’

stopping times, and 1f S < T a.e., then ES Cc ET'
If T 1is a stopping time, and if A € ET’ the rev. TA defined

by TA =T on A, TA = +o on Ac, is also a stopping time (Ac denotes

the complement of the set. A).

Any stopping time can be approached strictly on the right by the
sequence of stopping times Tn =T+ % (knowing everything up to the near
future you know the present); the similar property on the left is false
(knowing the strict past is not enough to know the present); the stopping
times which can be thus announced are called predictable times.

1.4. Predictable times. A predictable time T is a stopping time T for

which there exists a non decreasing sequence (Tn)n>0 of stopping times

such that
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lim T =T a.e., and \/n T <T a.e. on {T > 0}.
n*+ «© n

We shall say that such a sequence (Tn) anncunces the stopping time T.
Let T be a predictable time and (Tn) a sequence announcing T;
the o-field 5&_ =\J FT is independent of the choice of the announcing
n n

sequence. It is the o-field of the events occurring strictly before the

time T. If A€ F, the stopping time T, is also a predictable time,

T, A
The o-field ET— is contained in ET, and if S 1is a stopping time and
< .e. Cc .
S <T a.e., then ES ET—

1.5. Graph of a stopping time. If T is a stopping time, its graph [T]

is the subset of ]{+X Q:

[Tl= {(t,w); t = T(w) < +=} .

1.6. Accessible time. An accessible time is a stopping time T, such that
its graph [T] is contained in a countabie union of graphs of predictable
times. So there exists a partition (An) of £ such that on each An’

the time T can be announced by a sequence (S_ )

n,m mzp. But the sequence

(Sn m) depends on the set An' The time T {is predictable if one can make
b

the (Sn,m) independent of n.

1.7. Totally inaccessible time. A totally inaccessbile time is a stopping

time T such that for every predictable time S, we have P(T = §<+w) = 0.
In other words, ome just cannot announce a totally inaccessbile time
except on sets of measure zero.

1.8. Decomposition of stopping time. Let T be a stopping time; there

exists a set A€ F, (unique in the sense that the difference of two such

sets is of measure zero) such that T, is an accessible time, T,  isa
A

totally inaccessible time and A C {T<+=},
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STOCHASTIC PROCESSES

A stochastic process X is a real valued function (t,w) - Xt(w)
defined on H&_X Q.
1.9. A stochastic process Y is a version of a process X if \dt >0
P(Yt # Xt) = 0. If one looks at the values of two such processes X and
Y at a countable number of times (which is the best one can do in reality)
6one can't tell them apart.

1.10. Two processes X and Y are indistinguishable if

P(w; 3 t such that Xt(w) # Yt(w)) = 0. This is a much stronger property
than the preceding one. 1In the following chapters we shall state theorems

", It will mean,

of the kind: '"there exists'a unique process such that. ..
two processes having this property are indistinguishable.
1.11. A process X 1s measurable if the application (t,w) - Xt(w) is
g(ﬂh} X F measurable (E(R+) is the borelian o-field on R+).

1.12. A process X 1is adapted if for every t > 0 the application

w +> Xt(m) is f&-ﬁeasurable.

1.13. A process X 1s progressively measurable if for each t > 0 the

restriction of the application (s,w) > Xs(w) to the set [0,t] X Q is
B([0,t]) x Et— measurable. Such a process is an adapted process.

Why is the notion of progressive measurability of any interest?

a) If X is a stochastic process and T is a stopping time,
de V. = i

notedby XT the r.v XT(w) XT(w)(w)’ this r.v. is defined only on
{T < +} (unless X, is defined in which case we take XT = Xoo on
{1 = +}). i ;
1 Assume that X is an adapted process; is then Xl et w} B

£T~measurab1e function? No, in general; but if X is progressively
measurable, the r.v. XTI{T<+@} is ET—measurable.

b) Let A be a progressively measurable set (i.e. IA is a

progressively measurable process); then the r.v.
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DA(w) = inf(t; (t,w) € A)

is a stopping time (here we adopt the convention dinf ¢ = +). This last
result is far from being trivial,.

1.14. Cadlag processes. A process X is cddlag if each of its trajectory

t > Xt(w) is a right continuous function with finite left limits. For
such a process we will denote by Xt_ the left limit at time t, and by
AXt =X - X_ the jump at time t. The jumpsize will be IAXtI.

Any cadlag adapted process is progressively measurable, and two

cadlag versions of the same process are indistinguishable.

Take a cadlag process X, and define the r.v.

Tl,O =0
Ty ,q = infles [ax. | > 11
T1,2 = inf(t; t > Tl,l’ ]AXtI > 1)
Tk,O =0
1 1
=i : = y < =
Tyn = A0ECE € T g I <
In other words T is the time of the nth Jump of size [AX | € [l —l—]
k,n t k> k-1""

The processes X and X _ are progressively measurable therefore the

T, , are stopping times. Each of the trajectories ¢t -+ Xt(w) is a right
’

continuous function with left limits; in a compact interval [0,s] it has

only a finite number of jumps of size bizger than a given € > 0, and the

set U= {(t,w); AX (W) # 0} 1is exactly the countable union of the graphs

U
gzl[Tk,n,'
n>1
Each stopping time can be split Into its totally inaccessible part

and its accessible part. Each graph of an accessible time can be covered by
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a countable union of graphs of predictable times. And in the end we can
find a countable number of totally inaccessible times Tn, and a countable

number of predictable times Sn such that
= {(t,w); AXt(w) # 0} C g(ﬁsn] U ﬂTn])-

Moreover we can always assume that P(Tn =T, <+°)=0 and

P(S =8 < +o) = 0 n # m. So we can cover the jump times of a cadlag
adapted process by a countable number of totally inaccessible, or predict-
able times. Note that at the totally inaccessible times Tn we have

AXT #0 on {Tn < +} , but at the predictable times S AXS can be
n n

zero on part of {Sn < +»} ., This is what comes from using predictable
times instead of accessible times,

1.15. Predictable o-field. The predictable o-field is the o-field on

I&_X Q generated by the left continuous adapted processes. This o-field
will be essential in stochastic integration (see chapters 3 and 5). A
subset of }H_X'Q is predictable if it belongs to the predictable o-field.
A process X is predictable if the function (t,w) - Xt(w) is measurable
with respect to the predictable o-field. Any predictable process is pro-
gressively measurable.

It is handy to have some other systems of generators for the pre-
dictable o-field. Here are two:

a) it is generated by the process of the form ¢*(w)I, (t)+
g 0" 7{0}

n-l
):s’(w)l < <,..< x i

]t 1](t), where O f_to tl e tn < o, wo is a bounded
rﬂ-acasutable r.v., and the r.v. wi are bounded and Et -measurable

!
b) it is also generated by the process of the form
n-1
A
5 gy(0) + 2 P11

ina ¢

IT T l(t,w), where the (T ) form a nondecreas-
i+l

inite sequence of stopping times, wa is a bounded, =0—measurab1e

r.v., the

] 1is the

vy are ﬁgi-measutable, bounded r.v. and lTi,Ti+l



.. . < <
stochastic interval {(t,w); Ti(w) t __Ti+l(m)}.

If X is a predictable process and T a predictable time, the
r.v. XTI{T<+m} is ET_—measurable (it is obvious for left continuous

processes and extend easily to predictable processes).

1.16. Predictable times and predictable o-fields. A r.v. T is a pre-

dictable time if and only if its graph [Tl is a predictable set (this is
another non trivial result).

If A is a predictable set, the r.v. DA(w) = inf(t; (t,w) € A)
is a stopping time (1.13 and 1.15). If the graph KDAH is included in the

set A, KDAH = A,\]DA + o [ is a predictable set and D

A is a predictable

time.

1.17. Cadlag predictable processes. In particular, if (Xt) is a cadlag

predictable process, the time Tk n of the nth jump of size |AXt| €
1 1 )
1 1. . . . _ . - U .
[k’ k—l] is a predictable time and U = {(t,w); AXt # 0} qzlnTn,kH
>
Furthermore the r.v. XT are F, -measurable (1.15). k>1
n,k T n, k-

1.13. Increasing processes and processes with finite variation. A process

A 1is an increasing process if
a) A is adapted and cadlag
b) AO =0
c) AS < At for s < t.
A process B is a process with finite variation if
a) B is adapted and cadlag
b) By = 0
c) for each w, the trajectory w Bt(w) has finite variation on
compact intervals.
One can show that a process is a process with finite variation if and only

if it is the difference of two increasing processes.

If B is a process with finite variation, theStieltjes integrals
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f;f(s)st(m) exist for any bounded (or non negative) borelian function
f(s). The symbol ff(s)]dBS[ will denote the intigral of f(s) with
respect to the variation of B_. In particular fOIst(w)l is the varia-
tion of Bs(w) on [0,t].

An increasing process A 1is integrable if E[f:dAt] < 4, A

process B has integrable variation if E[I:]quI] < 4+,
If B 1is a process with finite variation, the sums 2 |ABS[ <

t s<t
f0|st| are finite; and the process B is of the form

B, =B, + ] AB
s<t

[ . . s s . . .
where B is a continuous process with finite variation (if B is an in-
. . c . 2 .
creasing process, so is B7). Using 1.14 .we can write z ABS in the form
s<t

EABT I{tzin}’ where Tn is a sequence of stopping times.

1.19. Predictable processes with finite variation. Suppose now that 1. is

a predictable process with finite variation, the stopping times Tn can be

taken predictable, and the ABT are ET
n n-

predictable process with finite variation is therefore of the form

-measurable (see 1.17). Any

- nC
Be = B ¥ z"’nI{tiTn}

c . . PO . 2
where B is a continuous process with finite variation, the Tn are pre-

dictable times, the r.v. ¢~ are F, exists

T - {e>1 )

for any t. The reader can check that conversely any process of this form

~measurable, and ZI¢DII
n

is a predictable process with finite variation.
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CHAPTER II: MARTINGALES, LOCAL MARTINGALES AND SEMIMARTINGALES

We shall just give here the results necessary for Theorem 3.1 of
chapter 3 which shows why semimartingales are important. The machinery on
martingales and local martingales needed to construct the stochastic

integrals will be seen in chapter 4.

MARTINGALE, SUBMARTINGALE AND SUPERMARTINGALE

This section is just a summary of the classical results in martin-
gale theory. The reader who is not familiar with the subject should consult
[6] or [12].
2.1. Martingales. A martingale is an adapted process M such that

o E ) <+ Yeso

B EDM|F] =M ae Yeo>s.

2.2. Sub and supermartingales. A super (resp. sub) martingale is an adapt-

ed process M such that
a) B[ [l <+= ¥e>o0
< . > .e. > s.
b) E[Mtlz_Iis]_Ms (resp _Ms) a.e Vt_s
If Mt is the capital of a gambler a time ¢t the notion of martingale
(resp. sub, resp. super) corresponds to the notion of fair (resp. favorable,

resp. unfavorable game).

2.3. (Cadlidg versions of martingales. Any martingale M has a cadlag

version; therefore the term "martingale" will from now on mean "cadlag

martingale’.

2.4, If X 4is a supermartingale (non necessarily cadlag), for

almost all w, the two limits
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Xt = lim and Xt = 1lim Xs
+ s+t - st
s>t s<t
s€D s€N

exist for each t € ]{F (the limits are taken over the set X of the
rational numbers). The process (Xt+) is then indistinguishable from a
cadlag supermartingale. The supermartingale (Xt) has a right continuous
version if and only if the function t - E[Xt] is right continuous. We

shall always, except when otherwise specified, consider cadlidg svpermartin-

gales, and call them supermartingales for short.

2.5. A martingale M is said to be uniformly integrable if the

family of r.v. (Mt) is uniformly integrable. For any uniformly inte-

£>0

grable martingale M, the limit M = lim M, exists a.e.; and for any
t*+4 o
stopping time T, we then have- MT = E[M&IET]. Apply this result to a

sequence Sn announcing a predictable time S. We get Msn = E[MQIESHI =
E[Mslisn] for any n; and by taking limits on both sides, E[Mslgs_] =Mg_.

S0 if M 1is a uniformly integrable martingale and S a predictable time,
the jump at time S verifies E[Auslgs_] = 0.
2.6. let X be a non negative supermartingale, and take X = 0,

then (Xt) is a supermartingale, and for any two stopping times T

0<t<+

1
and S such that S < T we have Xs and XT € L7, and E[XTIES] f.xs.

2.7. Let M be a non negative martingale, and let

T = inf(t; Mt or M =0), then M=0 a.e. on [T, +«] . 1In particular

t

if M = 1im M_ exists and if M > 0 a.e., we have T = +® a.e. that
t oo
is P{(w; 3t such that Mt(w) or Mt_(w) =0} =0,

2.8. Jensen's inequality. If M 1s a martingale and f(x) is

a convex function, the process f(M) is a submartingale provided
E[JEM)[] < +=, Vt>o.

2.9. Doob's decomposition theorem.
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If M is a uniformly integrable martingale, and A is an inte-
grable increasing process, the process X =M - A is a supermartingale,
satisfying the strong following integrability condition: the family of
r.v. {XTI{T<+°%’ T stopping time} is a uniformly integrable family. We
shall call those supermartingales, supermartingales of class (D). Doob's
decomposition theorem is just the converse statement: any supermartingale

X of class (D) is of the form
X=M-A

where M 1is a uniformly integrable martingale, and A is a predictable,

integrable, increasing process. And this decomposition is unique. See

[12], [4] and [14] for three different proofs of this theorem.
2.10. Corollaries.

1) Let X be a supermartingale of class (D), and B be the
predictable increasing process in Doob's decomposition. The process B
jumps only at predictable times; at such a predictable time T, AB is

T

ET_—measurable (see 1.19) and we have, (2.5), if M is the uniformly

integrable martingale M =X + B
0 = E[AM}|F, ] = BIAX, + 8B, |E; ) = E[AX |E; 1 + 8B,

And the jumps of B are easy to compute.

2) If A 1is an integrable increasing process the process - A is
a supermartingale of class (D); therefore there exists a unique integrable
predictable increasing process B such that B - A is a uniformly inte-
grable martingale. The process B 1is called the compensator of A.

This generalizes to processes with integrable variation. If A 1is
such a process, there exists a unique predictable process B with inte-

grable variation such that B - A 1is a uniformly integrable martingale.
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The process B 1is again called the compensators of A. From part 1 of
this corollary we get:

a) 1if T 1is a totally inaccessible time, and ¢ an ET—measurable
function in Ll, the compensator of At = ¢I{t2i} is a continuous process
with integrable variation,

b) if T 1is a predictable time, and ¢ is an ET—measurable

. . 1 .
function in L°, the compensator of At = wI{tZF} is the process

B, = Elp|E,_]

t I{tzT}

LOCAL MARTINGALES AND PROCESSES WITH LOCALLY INTEGRABLE VARIATION

Let X be a stochastic process, and T a stopping time. The
symbol XT will denote the process X stopped at time T : XT(m) =
XtAT{w)' A process M is a martingale if and only if, for any constant
time n, the process M is a uniformly integrable martingale. And {t is
natural to let the constant times n be stopping times Tn:

2.11. Definition. A localizing sequence is_a nondecreasing sequence (Tn)

of stopping times such that I%m Tn =+» a,e.

2,12, Definition. A process M is a local martingale if

M, =0

a) o

b) there exists a localizing sequence (Tn) such that cach pro-
T

cess M " is a uniformly integrable martinzale.

Such a sequence (Tn) will be called a fundamental sequence for the local

martingale M.

{ i adlig processes as we
Remark. 1) Local martingales are necessarily ¢ 2P

-~ : n
decided that here "martingale" means "cadlag martingale’.

2) The processes defined above should really be called "lecal

martingales vanishing at time zero". We shall not usé€ here the general
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concept of local martingales. The interested reader can consult [3].

2.13. Definition. A stopping time T reduces a local martingale M if

M is a uniformly integrable martingale.

2.14. Theorem. Let M be a local martingale then

1) a stopping time S reduces M if and only if the process MS

" ] c s y S . -
is of class (D) (i.e. the family of r.v. {MTI{T<+ﬂﬂ ; T stop

ping time} is uniformly integrable;

2) if T 4is a stopping time reducing M, if S 1is a stopping

time and if S < T, then S reduces T.

3) if S and T are two stopping times reducing M, then S V T

reduces M.

Proof. Parts 1 and 2 are trivial. Part 3 comes from the fact that

N
WV < 4 -

2.15. Theorem. If a process M 1is Jocally a Jocal martingale, thcn it is

a local martingale.

So there is no way one can get more general processes by localizing
once more.

Proof. There exists a localizing sequence (Tn) such that each process

T
M™ is a local martingale. Let H = {T; T stopping time, MT is a uni-

formly integrable martingale}. And take R = es;é sup T. There exists a
sequence Sn of elements of H which converges a.%. to R. Using part 3
of 2.14 we can make this sequence non decreasing. The r.v. R has to be
bigger than or equal to any of the Tn (a.e.), so R =+, and Sn is a
fundamental sequence for the process M.

2.16. Definition. A process B has locally integrable variation if there

T
exists a localizing sequence (Tn) such that each process B ™ has

integrable variation.
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2.17. Theorem. Let B be a process with locally integrable variation,

there exists a unique predictable process A with locally integrable varia-

tion such that B - A is a local martingale. A is called the compensator

of B.

Proof. Easy consequence of the existence and uniqueness of the compensator
of a process with integrable variation.

2.18. Remark. It is important to remark the following fact. If B is a

predictable process with finite variation, then the variation of B is

locally bounded: define the stopping times T, = inf(t; f;]st] >mn) An.
The variation of B on EO,Tnﬂ is bounded by n, but we know nothing on
the jump of B at time Tn' Now each time Tn is predictable and can be

announced by a sequence (Sn,m)m o} on EO,Sn,mﬂ the variation of B is

bounded by n. Take the stopping times Rk = sup S . The sequence (Rk)
n<k oW
@Ek
is a localizing sequence and on lO,Rk] the variation of B is bounded by
k.

Let A be a process with finite variation. If there exists a
predictable process B with finite variation such that A - B is a local
martingale, then B has locally bounded variation, and A itself has
locally integrable variation. We can rewrite theorem 2.17 in a stronger

form

2.19. Theorem. A process A with finite variation has a compensator if

and only if its variation is locally {ntegrable.

Here is now an easy way to verify that the variation is locally
integrable.

2,20. Lemma. Let A be a precess with finite variation; we assume that

there exists a localizing sequence (Tn) such that for each n,

sup lAAsl = Yn € Ll. Thea the variation of A ig locally integrable.

s<T
- n




23

t
Proof. Take S, =T, A inf(t; fo!dAsl.z n). The sequence (Sn) is local-

izing, the variation of A on [0,Snﬂ is bounded by n, and

I laa ] <n+oaag}<n+y erl.

EO,SnE n

We shall now state the fundamental lemma for local martingales.

2.21. Fundamental lemma. Let M be a local martingale then

1) the increasing process M: = supIMs} is locally integrable
s<t
2) the local martingale M can be written in the form M= U+ V

where U is a local martingale, the jumps of U are bounded by 1

in size, and V is both a local martingale and a process with

finite variation. (lne bound 1 for the jump size could have been

replaced by another stfictly positive constant). In particular
T
there exists a localizing sequence (Tn) such that each U n is

a bounded process.

Proof. 1) Let Rn be a fundamental sequence for M. We can always assume
that the Rn are finite (otherwise use the fundamental sequence Rn A n)3

we consider the following stopping times

S =R Ainf{t; |M | >nl.
n n -

¢l

R
The martingales M ~* are uniformly integrable, and Sn < Rn’ therefore the

r.v. M is integrable (2.5). Furthermore on HO,Snﬂ, we have [Mtl < m

As the sequence (Sn) is a localizing sequence, the increasing process
M: is locally integrable.
2) Let A_= X AMSI{IAMSI>%}. This sum is, for each w, a finite

t
s<t
sum. Take the sequence -(Sn) constructed above and consider the stopping
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times
t
T =S A inf{t; foldAs’ > n}.

The sequence (Tn) is. a localizing sequence, and
Iﬂo,Tnﬂ'dAtl <n+ IAATHI <n+ ZM;n € Ll. There exists therefore a compen-
sator B for A. Take V =A - B, V is both a local martingale and a
process with finite variationm.

The jumps of B occur only at predictable times T. Stop all the
processes at the time Sn’ and remember that Msn is a uniformly integrable
martingale. If T 1is a predictable time, we get

s
g

|aB,,

S s s
- n _ n n i
= |E[A,M|E, D = IE[AMT - oMy I{IAMTP%}ET-” <0+ 35
And the jumps of U verify
lau | < |agt - &) | + ]aB | <1

It is now easy to see that the sequence (Rn)’ Rn = inf(t;|Ut|3_nL
R
is a localizing sequence and that U ™ is bounded by n + 1.

SEMIMARTINGALES

2,22, Definition. A process X is a semimartingale if it is of the form

X = XO + M + A, where XO is an Zo—measurable r.v., M is a local martin-

gale and A is a process with finite variation (remember that by definition

both processes M and A vanish at t = 0).

This definition contains no local integrability condition. It
should not if we went the semimartingales to remain semimartingales when
the probability P is replaced by an equivalent probability Q.

Here again one cannot get more general processes by localizing the



(3]
(€%

notion of semimartingale

2.23. Theorem. Any process which is locally a semimartingale is a semi-

martingale.

Proof. We shall need the following useful lemma

2.24, Llemma. Let X be a semimartingale, assume that the size of the

jumps of X is bounded by a (a > 0). Then one can write X in a unique

way as

X = XO +M+ A

where XO is an Eo-measurable r.v., M is a local martingale, and A is

a predictable process with finite variation (in fact, locally bounded

variation by 2.18).

Proof. The semimartingale is of the form X =X + N+ B where N 1is a

0

local martingale and B a process with finite variation. The r.,v. Xo is

uniquely determined. The jumps of the process B verify
|aB_| <-|am_| + |ax_| < 2v* + a.
s! — s s! — s

The increasing process Yt = sup[ABSI is locally integrable and by 2.20, the
s<t
variation of B is locally integrable. Let A be the compensator of B,

and let M =N+ B - A; M is a local martingale, A is a predictable

process with finite variation, and X = X  + M + A,

0

If X = X+ M+ A =X, + M' + A' are two such decompositions of

the semimartingale X, A - A' is a local martingale, so A' is the compen-

4ato =
2ter of A, But 4 being predictable is its own compensator and A = At

2L of 2.23. The process X is locally a semimartingale. That is, there
<118 .
its 3 localizlng sequence of stopping times (Tn), such that each X

T .
HESIEY scmiaattingale

-

Take Yt = 2 AX T

has
5d18¢ the process Y
RN {le |>l}' As X 1is cadlag P

al s'—
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T T
n n

finite variation; for each n the process X = - Y is a semimartingale

with jump size smaller than 1. It can therefore be written in a unique
T
way as X T_y®=x +M +A , where M 1is a local martingale and A
0 n n n n

is a predictable process with finite variation. The uniqueness of the An

gives

A =A

n 1! and Mo=M on lO,Tn].

n+l
One can patch the An together, and the Mn together to get the processes

A=JAT1 M=JMI .
n® I‘Tn--l’Tnn nt IlTn--l’TnB

has finite variation, the process M 1is locally a local martingale, there-

The process A 1is predictable and

fore it 1s a martingale (2.15) and X = X0 + M+ A+ Y is a semimartingale.

The following lemma is important.

2,25. Lemma. Let X be a cadliag adapted process; we assume that there

cxists a sequence of stopping times Tn and a sequence of semimartingales

Y such that
p Such that
1) 1lim T_ =+« a.e.
o
2) X =Y on IO,Tn[:

Then X is a semimartingale.

T T

n_gn_
P;oof. X" = Yn Y“’Tnl{qun} + XTnI{tz?n}. So for each n the process
x® is a semimartingale. If the sequence Tn is non decreasing, 2.23 says

that X is a semimartingale. Otherwise, make the sequence non decreasing
by remarking that if S and T are two stopping times, and if X% and

SAT and XSV'r = XS + XT - XSAT are

XT are both semimartingales, then X
both semimartingales.

2.26. Examples of semimartingales.

1) any supermartingale (therefore any submartingale) is a semi-
martingale: let X be a supermartingale, by 2.24 we just have to show

n n _ n_ oo
that each X is a semimartingale. But X, = E[angt] + Xt E[angt]'



