


 

 

 

 

 

 

 

Jaures Cecconi 

Stochastic Differential Equations 

Lectures given at 
Centro Internazionale Matematico Estivo (C.I.M.E.), 
held in Cortona (Arezzo), Italy, 
May 29-June 10, 1978 

( d.)E

a Summer School of the



C.I.M.E. Foundation 
c/o Dipartimento di Matematica “U. Dini” 
Viale Morgagni n. 67/a 
50134 Firenze 
Italy 
cime@math.unifi.it  

 

 

 

 

 

ISBN 978-3-642-1 0   e-ISBN: 978-3-642-1 0
DOI:10.1007/978-3-642-1 0
Springer Heidelberg Dordrecht London New York 
 

 

 

 

 

©Springer-Verlag Berlin Heidelberg 2010 
st  

With kind permission of C.I.M.E. 
 

 

 

Printed on acid-free paper 

 

Springer.com 

1 77-1 1 79-5

Reprint of the 1  ed. C.I.M.E., Ed. Liguori, Napoli & Birkhäuser 1981 

1 79-5



C O N T E N T S  

C. DOLEANS-DADE : $ t o c R a s t i c  P r o c e s s e s  and Stochastic 
  iff e r e n t i a l  ~ q u a t i o n s  pago 5 

A. FRIEDMAlJ : Stochast ic  D i f f e r e n t i a l  E q u a t i o n s  
and A p p l i c a t i o n s  'I 75 

D. STROCK/ 
S.R.S. VARADBAN : T h e o r y  of D i f f u s i o n  P r o c e s s e s  " 149 
G. C . PAPANICOLAOU: W a v e  P r o p a g a t i o n  and H e a t  C o n d u c t  ion  

i n  a R a n d o m  M e d i u m  " 193 
C.DEWITT-MORETTE : A Stochas t ic  P r o b l e m  i n  P h y s i c s  217 
G. S. GOODMAN : Th,e E m b e d d i n g  P r o b l e m  f o r  Stochastic 

M a t r i c e s  " 231 



STOCHASTIC PROCESSES AND 

STOCHASTIC DIFFE- T I  AL EQUATIONS 

C . DOLEAN S-DADE 



STOCHASTIC PROCESSES AND STOCHASTIC DIFFERENTIAL EQUATIONS 

C. Dolgans-Dade 

University of Illinois, Urbana 

Introduction. Since Ito has defined the stochastic integral with respect 

to the Brownian motion, mathematicians have tried to generalize it. The 

first step consisted of replacing the Brownian motion by a square integrable 

martingale. Later H. Kunita and S. Watanabe in [lo] introduced the concept 

of local continuous martingale and stochastic integral with respect to 

local continuous martingales which P. 1. Ifeyer generalized to the no.? 

continuous case. 

But in many cases one observes a certain process X and there are 

at least two laws P and Q on (Q ,F) .  For the law Q, X is not a local - 

martingale but the sum of a local martingale and a process with finite 

variation. We would like to talk about the stochastic integrals [asdxs 
P 

and !Qsdxs in thc two probability spaces (Q,E,P) and (B,F,Q). And of 
Q 

- 

course we would like those two stochastic integrals to be the same. 

This is why one should try to integrate with respect to semi- 

martingales (sums of a local martingale and a process with finite variation), 

and this is what people have been doing for awhile (see chapters 5 and 6). 

Now the latest result in the theory is "one cannot integrate with respect 

to anything more general than semimartingales" (see chapter 3). So as it 

stands now the theory looks complete. 

To end this introduction I wish to thank Professor J. P.Ceceoni and 



the C.I.M.E. for their kind invitation to this session on differential 

stochastic equations in Cortona; the two weeks of which I, and my family, 

found most enjoyable. 



STOPPING TIMES AND STOCHASTIC PROCESSES 

We s h a l l  l i s t  i n  t h i s  chapter some d e f i n i t i o n s  and propert ies  on 

stopping times and s tochas t ic  proccsoes. The proofs can be found i n  [ I ]  o r  

(21. 

In  a l l  t h a t  follows (n.2.P) is a givcn complete probabi l i ty  

space and n f m j l y  of sub-0-fields of 1 ver i fy ing  the " u s ~ ~ a l "  - 
following properties 

a) the  family (Ft)t>O is non decreasing and continuous on the 

r igh t  

b) f o r  each t ,  gt contains a l l t h e  P-null s e t s  of 1 (a P-null - 
s e t  f s  a s e t  of P-measure zero). 

The a-f ields Et ~ h o o l d  be thought of a s  the  o-field of the  events which 

occurred up t o  t i c e  L .  

Ur w i l l  soncclces consider other  p r o b a b i l i t i e s  Q on t h e  measur- 

able  space (3.1). But we s h a l l  always assume t h a t  t h e  p r o b a b i l i t i e s  P 

and Q a r e  eqoivalcnt ( i - e .  they have t h e  same n u l l  s e t s ) ;  and t h e  family 

( L ~ )  w i l l  s t i l l  s a t i s f y  the "usual" condit ions r e l a t i v e l y  t o  t h e  probabil- 

i t y  Q* 

STOPPISC TI= 

Suppose a ~ d l * r  decides t o  s top  playing when a c e r t a i n  phenomenon 

has occurrd in the ga-s- Let T be the  time a t  which he w i l l  s t o p  playing- 



The event (T 5 t? will depend only on the observations of the gambler 

up to time t. This remark leads to the natural following definition. 

1.1. Definition. A non negative random variable T is a stopping time if 

for every t 2 0 the event {T ( t? is in &. (We allow the random 

variable T to take the value +) 

1.2. Properties of stopping times: 

I) if S and T are two stopping times so are SvT, SAT and 

2) if Sn is a monotone sequence of stopping times, the limit 

T = lim Sn is also a stopping time. 
n++m 

1.3. The o-field gT. If T is a stopping time, gT is the family of all 
the evcntn A E & =$&, such that for every t 2 0 the event 

A n  {T - < t) Egt. 
It is easy to check that gT is a 5-field; it is intuitevely the 

a-field of all the events that occurred up to time T. In particular, if 

T is the constant stopping time t, zT = $; if S and T are two 

stopping times, and if S (T a,e., then F C zT. ==s 
If T is a stopping time, and if A E XT, the rev. TA defined 

by TA = T on A, T = + w  on AC, is also a stopping time (A' denotes A 

the complement of the set. A). 

Any stopping time can be approached strictly on the right by the 

sequence of stopping times T = T + (knowing everything up to the near n n 

future you know the present); the similar property on the left is false 

(knowing the strict past is not enough to know the present); the stopping 

times which can be thus announcad are called predictable times. 

1.4. Predictable times. A predictable time T is a stopping time - T for 

which there exists a non decreasing sequence (TnInLO of stopping times 

such that 



l i m  Tn = T a .e . ,  and v n  Tn<T a .e .  on {T > 0). 
n++ OD 

W e  s h a l l  s ay  t h a t  such a sequence (Tn) anncunces t h e  stoppiilg t ime T. 

Let  T be  a p r e d i c t a b l e  t ime and (T,) a sequence announcing T; 

t h e  + f i e l d  5- =! FTn is independent of  t h e  choice  of  t h e  announcing 

sequence. It i s  t h e  a - f i e ld  of  t h e  even t s  occur r ing  s t r i c t l y  be fo re  t h e  

t i m e  T. I f  A E I&- t h e  s topping t ime TA i s  a l s o  a p r e d i c t a b l e  time. 

The a - f i e l d  gT- is contained i n  2 and i f  S, is a s topping t h e  and 
-TY 

S < T a.e. ,  t hen  & C gT-. 
1.5. Graph of a s topping time. I f  T is a s topp ing  t ime,  i ts graph IT] 

is t h e  subse t  of W+x R: 

1.6.  Access ible  t ime. An a c c e s s i b l e  t ime is a s topp ing  t ime T, such t h a t  

i ts  graph IT] is contained i n  a c o u n t a b ~ e  union of graphs of p r e d i c t a b l e  

t imes .  So t h e r e  e x i s t s  a p a r t i t i o n  (A,) of  R such t h a t  on each An, 

t h e  t ime T can be  announced by a sequence '%.,m)m2~' But t h e  sequence 

(Sn,m) depends on t h e  s e t  An. The time T is p r e d i c t a b l e  i f  one can make 

t h e  (S ) independent of  n. 
n,m 

1.7. T o t a l l y  i n a c c e s s i b l e  time. A t o t a l l y  i n a c c c s s b i l e  t ime is a s topp ing  

t ime  T such t h a t  f o r  every  p r e d i c t e b l e  t ime S, we have p(T = S <  +m) = 0. 

In o t h e r  words, one j u s t  cannot announce a t o t a l l y  i n a c c e s s b i l e  t ime  

except  on s e t s  of measure zero. 

1.8. Decomposition o f  s topping t ime- Let T be a s topp ing  t ime; t h e r e  

e x i s t s  a set A E E~ (unique i n  t h e  s e n s e  t h a t  t h e  d i f f e r e n c e  of two such 

sets is  o f  measure zero) such t h a t  % is a n  a c c e s s i j l e  t ime ,  T is a 
A" 

t o t a l l y  i n a c c e s s i b l e  t ime and A {T *OD) .  



STOCHASTIC PROCESSES 

A stochastic process X is a real valued function (t,w) + Xt(w) 

defined on JR+ x 52. 

1.9. A stochastic process Y is a version of a process X if v t  > 0 - 
P(Yt # Xt) = 0. If one looks at the values of two such processes X and 

Y at a countable number of times (which is the best one can do in reality) 

bne can't tell them apart. 

1.10. Two processes X and Y are indistinguishable if 

P(w; 3 t such that Xt(w) # Y (w)) = 0. This is a much stronger property t 

than the preceding one. In the following chapters we shall state theorems 

of the kind: "there exists a unique process such that..-.". It will mean, 

two processes having this property are indistinguishable. 

1.11. A process X is measurable if the application (t,w) + Xt(o) is 

B(IR+) x F measurable (g(R+) is the borelian 0-field on R+). - - 
1.12. A process X is adapted if for every t 2 0 the application 

w -+ Xt(w) is F -measurable. =t 

1.13. A process X is progressively measurable if for each t 2 0 the 

restriction of the application (s,w) + Xs(w) to the set [O,t] x Q is 

B([O,t]) x Et- measurable. Such a process is an adapted process. - - 
Why is the notion of progressive measurability of any interest? 

a) If X is a stochastic process and T is a stopping time, 

denotedby XT the r.v. %(w) = X (w); this r.v. is defined only on 
T(w) 

{T < +-I (unless Xoo is defined in which case.we take XT = Xm on 

{T = f -1). Assume that X is an adapted process; is then 
X ~ l ~ ~ < + m ~  a 

F -measurable function? No, in general; but if X is progressively =T 

measurable, the r.v. YpI{T<+ol is F -measurable. 
-T 

b) Let A be a progressively measurable set (i.e. 'IA is a 

Progressively measurable process) ; then the r .v. 



is a stopping time (here we adopt the convention inf Q = +-). This last 

result is far from being trivial. 

1.14. Csdlsg processes. A process X is cadljg if each of its trajectory 

t -+ X (w) is a right continuous function with finite left limits. For 
t 

such a process we will denote by Xt- the left limit at time t, and by 

AXt = Xt - Xt- the jump at time t. The juntpsize will be I A X ~ ~ .  
Any chdlSg adapted process is progressively measurable, and two 

csdlsg versions of the same process are indistinguishable. 

Take a cAdl2g process X ,  and define the r.v. 

. . .  
In other words T is the time of thc nth jump of size 1 1  

k,n /Axti [pml. 
The processes Xt and Xt- are progressf''el~ measurable therefore the 

T are stopping times. Each of t h e  trajectories t + Xt(u) is a right 
k,n 

continuous function with left linics; f n  a co=pact interval it has 

only a finite number of jumps of size than a given E > 0, and the 

set U = {(t,u) ; AX (w) # 01 is exactly the countable union of the graphs 
t 

kxl' Tk, n' . 
nL1 

Each stopping time can be split into its cotally inaccessible part 

and its accessible part. Each graph an zccessible time can be covered by 



a countable union of graphs of predictable  times. And i n  t h e  end we can 

f ind  a countable number of t o t a l l y  inaccessible  times Tn, and a countable 

number of p red ic tab le  times Sn such t h a t  

Moreover we can always assume t h a t  P(T, = Tm < +OD) = 0 and 

P(S, = Sm < +m) = 0 n # m. So we can cover the  jump times of a czdlhg 

adapted process by a countable number of t o t a l l y  inaccess ib le ,  o r  predict-  

able  times. Note t h a t  a t  t h e  t o t a l l y  inaccess ib le  times Tn we have 

AXT # 0 on { T ~  < +m} , but a t  t h e  p red ic tab le  times Sn, AXS can be 
n n 

zero on par t  of {sn < +OD) . This i s  what comes from using pred ic tab le  

times instead of access ib le  times. 

1.15. Pred ic tab le  a - f ie ld .  The predictable  a - f ie ld  i s  t h e  a - f ie ld  on 

R + x  R generated by t h e  l e f t  continuous adapted processes. This 5-f ield 

w i l l  be  e s s e n t i a l  i n  s t o c h a s t i c  in tegra t ion  (see chapters  3 and 5).  A 

subset of IR x.R is  pred ic tab le  i f  i t  belongs t o  t h e  p red ic tab le  a-f ie ld.  + 
A process X is  pred ic tab le  i f  t h e  funct ion (t,w) -t Xt(w) i s  measurable 

with respect  t o  t h e  p red ic tab le  a-f ie ld.  Any pred ic tab le  process i s  pro- 

gressively measurable. 

It is  handy t o  have some o ther  systems of generators  f o r  t h e  pre- 

dictable  a-f ie ld.  Here a r e  two: 

a) it is  generated by the  process of t h e  form c p $ ( ~ ) I { ~ j ( t )  + 
nzl 

9i(u)1 , ( t ) ,  where 0 ( t o  < tl <...< tn < + w ,  PC is a bounded 
t=o l tf . t i+l 
i" a e a s u r a b l e  rev., and the  r.v. vi a r e  bounded and l't.-mea~urable 7-0 

1 
b, i t  is  a l s o  =enerated by the  process of t h e  form 

n-1 
( t , ~ ) ,  where the  (T ) form a nondecreas- 

i=1 i+l i 
i-lq fin'te of stopping times, 93 is a bounded, F measurable 

-0- 
r*Y.  * IbZ are 5 -measurable, bounded r .r. and is the  

f 



s t o c h a s t i c  i n t e r v a l  {( t ,w);  Ti(w) < t 5 T ~ + ~ ( w ) ) .  

I f  X is  a p r e d i c t a b l e  process  and T a p r e d i c t a b l e  t ime, t h e  

r . v .  XTI{T<+m) is F -measurable ( i t  is obvious f o r  l e f t  continuous =T- 

p rocesses  and extend e a s i l y  t o  p r e d i c t a b l e  processes) .  

1.16. P r e d i c t a b l e  t imes and p r e d i c t a b l e  a - f i e l d s .  A r . v .  T is a pre- 

d i c t a b l e  t ime i f  and only  i f  i t s  graph [TI i s  a p r e d i c t a b l e  s e t  ( t h i s  i s  

another  non t r i v i a l  r e s u l t ) .  

I f  A i s  a p r e d i c t a b l e  s e t ,  t h e  r .v .  D (w) = i n f ( t ;  ( t ,w) E A) A 

i s  a s topp ing  time (1.13 and 1.15).  I f  t h e  graph U ~ ~ i l  i s  included j.n t h e  

s e t  A, (DA] = A  ID^ + m 5 i s  a p r e d i c t a b l e  s e t  and DA i s  a p r e d i c t a b l e  

t ime. 

1.17. c a d l j g  p r e d i c t a b l e  processes .  I n  p a r t i c u l a r ,  i f  (Xt) is  a c>dlzg 

p r e d i c t a b l e  process ,  t h e  time T of t h e  nth jump of s i r e  I A X ~ I  E k,n 
1 1  

[-, is a p r e d i c t a b l e  time and U = { ( t , ~ ) ;  AXt # 0) = nzlU~n,kll. 
k s-1 

Furthermore t h e  r , v .  a r e  zT -m"asurable (1.15). 
k > l  

X~ 
- 

n,k n,k- 

1.13. Inc reas ing  processes  and processes  wit11 f i n i t e  v a r i a t i o n .  A process  

A is  an i n c r e a s i n g  process  i f  

a)  A i s  adapted and czdlzg 

b) A o = O  

c)  As ( At f o r  s ( t. 

A process  B i s  a process  wi th  f i n i t e  v a r i a t i o n  i f  

a )  B i s  adapted and c s d l s g  

b) Bo = 0  

c)  For each w, t h e  t r a j e c t o r y  w * B (w) has  f i n i t e  v a r i a t i o n  on t 

compact i n t e r v a l s .  

One can show t h a t  a process  is  a process  wi th  f i n i t e  v a r i a t i o n  i f  and on ly  

i f  i t  i s  t h e  d i f f e r e n c e  of two i n c r e a s i n g  processes .  

I f  B i s  a process  wi th  f i n i t e  v a r i a t i o n , t h e S t i e l t j e ~  i n t e g r a l s  



t 
j0f(s)dB (w) e x i s t  f o r  any bounded (or non negative) borel ian funct ion 

f  ( s )  . The symbol I f  (s)  1 dBs 1 w i l l  denote t h e  i n t e g r a l  of f  ( s )  with 
t 

respect  t o  t h e  v a r i a t i o n  of Bs. I n  p a r t i c u l a r  IOldBs(w) I i s  the varia-  

t i o n  of Bs(w) on [O,t].  

An increasing process A is in tegrab le  i f  ~ [ j i d d ~ ~ ]  < + m  . A 

process B has in tegrab le  v a r i a t i o n  i f  EII;ldBsl ] < + m  . 
I f  R i s  a  process with f i n i t e  v a r i a t i o n ,  t h e  sums 1 laBsl 5 

t s i t  

1 0 l d ~ s l  a r c  f i n i t e ;  and the  process B i s  of the  form 

where B' i s  a  continuous process with f i n i t e  v a r i a t i o n  ( i f  B is  an in- 

creasing process, so  is  BC). Using 1.14 .we can w r i t e  1 ABc i n  t h e  form 

IhBTnl{r>Tnl 9 T~ is a sequence of stopping times. 
n  - 
1.19.  P red ic tab le  processes with f i n i t e  var ia t ion .  Suppose now t h a t  I *  i s  

a  p red ic tab le  process with f i n i t e  v a r i a t i o n ,  t h e  stopping times Tn can be 

taken predictable ,  and t h e  ABT a r e  F -measurable (see 1.17). Any 
n =T n- 

p red ic tab le  process with f i n i t e  var ia t ion  is therefore of the  form 

where lIC i s  a continuous process with f i n i t e  v a r i a t i o n ,  t h e  Tn a r e  pre- 

d i c t a b l e  times, t h e  r.v. Vn a r e  zT -measurable, and l Ipn l~{ t ,T  e x i s t s  
n- n  - n 

f o r  any t. The reader  can check t h a t  conversely any process of t h i s  form 

is a pred ic tab le  process with f i n i t e  var ia t ion .  



CHAPTER 3I: MARTINGALES, LOCAL MARTINGALES AND SEMIMARTINGALES 

We shall just give here the results necessary for Theorem 3.1 of 

chapter 3 which shows why semimartingales are important. The machinery on 

martingales and local martingales needed to construct the stochastic 

integrals will be seen in chapter 4. 

MARTINGALE, SUBMARTINGALE AND SUPERMARTINGALE 

This section is just a summary of the classical results in martin- 

gale theory. The reader who is not familiar with the subject should consult 

161 or [12]. 

2.1. Martingales. A martingale is an adapted process M such that 

P.) B [ I M ~ ~ ]  < + -  v t > O  - 
b) EIMtl~s] = Ms a.e. v t  2 s. 

2.2. Sub and supermartingales. A super (resp. sub) martingale is an adapt- 

ed process M such that 

a) E [ ( M ~ ~ I  < -trn v t  2 0 

b) E [ M , ~ ~ J  (Ms (resp. ,Ms) a.e. \ t r  2 s. 

If Mt is the capital of a gambler a time t the notion of martingale 

(resp. sub, resp. super) corresponds to the notion of fair (resp. favorable, 

resp. unfavorable game). 

2.3. Cldlgg versions of martingales. Any martingale M has a chdlag 

version; therefore the term "martingale" will from now on mean "cadlsg 

martingale". 

2.4. If X is a supermartingale (non necessarily cldlhg), for 

almost all w, the two limits 



X = lim and = lim Xs 
t+ S-W 

S>t s<t 
sED s o  

exist for each t E IR+ (the limits are taken over the set I) of the 

rational numbers). The process (X ) is then indistinguishable from. a 
t+ 

cadlzg supermartingale. The supermartingale (Xt) has a right continuous 

version if and only if the function t .+ E[Xt] is right continuous. 

shall always, except when otherwise specified, consider cidllg supennartin- 

gales, and call them supermartingales for short. 

2.5. A martingale M is said to be unYformly integrable if the 

family of r.v. (Mt)t>O is uniformly integrable. For any uniformly inte- 
- 

grable martingale M, the limit Mw = lim Mt exists a.e.; and for any 
t++w 

stopping time T, we then have- % = ~ [ t ~ l ~ ~ ] .  Apply this result to a 

sequence Sn announcing a predictable time S. Be get M = E[M~I& 1 = 
'n n 

E[M I F  i for any n; and by taking limits on both sides, E[MS 1%-I = MS- . 
==, 

$0 if M is a uniformly integrable -martingale and S a predictable time, 

the jump at time S verifies E[AMs 13-1 = 0. 

2.6. Let X be a non'negative supermartingale, and take Xw = 0, 

then (Xt)O<t<+oP is a supermartingale, and for any two stopping times T -- 
and S such that S 5 T we have Xs and % E L', and E[% 1 F ]  < X  JS - S '  

2.7. Let M be a non negative martingale, and let 

T a inf (t; Mt or Mt- = 01, then M = 0 a.e. on IT, +-I . In particular 
if MaJ = lim Mt exists and if Mw > 0 a.e., we have T = + w  a.e. that 

t*" 
is ~ { ( w ;  3 t  such that Mt(w) or Kt-(w) = 0) 1 * 0. 

2.8. Jensen's inequality. If M is a martingale and f(x) is 

a convex function, the process f(M) is a submartingale provided 

~[lf(~~)Il C +*, bl t 2 0.  

2.9. Doob's decomposition theorem. 



If M is a uniformly integrable martingale, and A is an inte- 

grable increasing process, the process X = M - A is a supermartingale, 

satisfying the strong following integrability condition: the family of 

r.v. {x~I{~<++, T stopping time) is a uniformly integrable family. We 

shall call those supermartingales, supermartingales of class (D). Doob's 

decomposition theorem is just the converse statement: any supermartingale 

X of class (D) is of the form 

where M is a uniformly integrable martingale, and A is a predictable, 

integrable, increasing process. And this decomposition is unique. See 

[12], [4] and [14] for three different proofs of this theorem. 

2.10. Corollaries. 

1) Let X be a supermartingale of class (D), and B be the 

predictable increasing process in Doob's decomposition. The process B 

jumps only at predictable times; at such a predictable time T, ABT is 

F -measurable (see 1.19) and we have, (2.5), if M is the uniformly =T- 

integrable martingale M = X + B 

And the jumps of B are easy to compute. 

2) If A is an integrable increasing process the process - A is 

a supermartingale of class (D); therefore there exists a unique integrable 

predictable increasing process B such that B - A is -a uniformly inte- 

grable martingale. The process B is called the compensator of A. 

This generalizes to processes with integrable variation. If A is 

such a process, there exists a unique predictable process B with inte- 

grable variation such that B - A is a uniformly integrable martingale. 



The process B is again called the compensators of A. From part 1 of 

this corollary we get: 

a) if T is a totally inaccessible time, and 9 an zT-measurable 

1 function in L , the compensator of At =PI{t2Tl is a continuous process 

with integrable variation. 

b) if T is a predictable time,and 9 is an F -measurable 
=T 

1 function in L , the compensator of 
At = 91{t>~} is the process 

Bt = E[91~T-11{t>T} - 

LOCAL MARTINGALES AND PROCESSES WITH LOCALLY INTEGR/&LE [7ARI,iTION 

Let X be -a stochastic process, and T a stopping time. Tl~e 

symbol xT will denote the process X stopped at time T : x T ( 3  = 

XtnT(u). A process M is a martingale if and only if, for any constlnt 

time n, the process M" is a uniformly integrable martingale. And it is 

natural to let the constant times n be stopping times Tn: 

2.11. Definition. A iocalizing sequence is a nondec~a~in~. sequence (T,) 

of stopping times such that lim Tn = ++m a.e. 

2.12. Definition. A process M is a local martingale if 

a) Mo = 0 

b) there exists a localizing sequence (T,) sucft th~t-fiich pro- 

Tn 
cess M is a uniformly integrable nartinralc- - 

Such a sequence (Tn) will be called a fundamental Sequence fur :he local 

martingale M. 

Remark. 1) Local martingales are necessarily cjdl:~ Processes as 

decided that here "martingale1' means "cldllg martingale"- 

2) The processes defined above should real1? '* "lOCCil 

mrtingales vanishing at time we shall not use here the general 



concept of local martingales. The interested reader can consult [3]. 

2.13. Definition. A stopping time T reduces a local martingale M if 

MT is a uniformly integrable martingale. 

2.14. Theorem. Let M be a local martingale then 

1) a sto6ping tiine S reduces M if and only if the process M' 

S 
is of class (D) (i.e. the family of r.v. IM~I{~<+~) ; T stop- 

ping time) is uniformly integrable; 

2) if T is a stopping time reducing M, if S is a stopping 

time and if S 2 T, then S reduces T. 

3) if S T are two stopping times reducing M, then S v T 

reduces M. 

Proof. Parts 1 and 2 are trivial. Part 3 comes from the fact that 

Msfl = Ms + MT - MS"T 
2.15. Theorem. If a process 1.1 is !ocaliy a local martingale, thr.n it is 

a local martingale. 

SO there is no way one can gct mare general processes by localizing 

once more. 

Proof. There exists a localizing sequence (T,) such that each process 

is a local martingale. Let H a {T; T stopping time, M~ is a uni- 

formly integrable martingale). A ~ l d  t:*kc R = ess. sup T. There exists a 
TE H 

sequence 
'n 

of elements of 5 vihicfl converges as%. to R. Using part 3 

of 2.14 we can sake this sequence decreasing. The r.v. R has to be 

bigger than or equal to any of In (a-e.1, SO R = -!-a, , and Sn is a 

fundamental sequence for the PrQcess 3. 

2.16. Definition. A process B kas lcrcall? integrable variation if there 

exists a localizing sequence (T,) 

integrable variation. 



2.17. Theorem. Let B be a process with locally integrable variation, 

there exists a unique predictable process A with locally integrable varia- 

tion such that B - A is a local martingale. A is called the compensator 

of B. 
7 

Proof. Easy consequence of +he existence and uniqueness of the compensator 

of a process with integrable variation. 

2.18. Remark. It is important to remark the following fact. If B is a 

predictable process with finite variation, then the variation of B 

locally bounded: define the stopping times T = inf (t; j i l d ~ ~ ]  n) A n. 
n 

The variation of B on [O,T ! is bounded by n, but we know nothing on 

the jump of B at time Tn. Ncw each time Tn is predictable and can be 

announced by a sequence (Sn,m)m20; on a 0 , S  1 the variation of B is 
n ,m 

bounded by n. Take the stopping times Rk = sup S The sequence 
nLk " s ~ '  (%I 
m<k 

is a locallzing sequence and on KO,R~J the vaFiation of B is bounded by 

Let A be a process with finite variation. If there exists a 

predictab1.e process 3 with finite variation such that A - B is a local 

martingale, then B has locally bounded variation, and A itself has 

locally integrable variation. We can rewrite theorem 2.17 in a stronger 

form 

2.19. Theorem. A process A with finite variation has a compensator if 

and only if its variation is locally integrable. 

Here is now an easy t o  verify that the variation .is locally 

integrable. 

2.20. =. Let A be a Process finite variation; we assume that - 
there exists a 1ocalizinR seauence (Tn) such that for each n, 

1 
sup = Yn E L . Then the ':ariation of A i s  locally integrable. 

5" 



t 
proof. Take Sn = Tn A inf (t ; d~~ 1 n) . The sequence 6,) is local- - 
izing, the variation of A on rO,Sni is bounded by n, and 

We shall now state the fundamental lemma for local martingales. 

2.21. Fundamental lemma. Let M be a local martingale then 

1) the increasing process ME = sup\Msl is locally integrable 
szt 

2) the localmartingale M can be written in the form M = U + V 
where U is a local martingale, the jumps of U are bounded by 1 - 
in size, and V is both a local martingale and a process with 

finite variation. ('Lne bound 1 for the jump size cou1.d have been 

replaced by another .strictly positive constant). In particular 

Tn there exists a localizing sequence (Tn) such that each U 2 

s bounded process. - 
Proof. 1) Let Rn be a fundamental sequence for M. We can always assume - 
that the Rn are finite (otherwise use the fundamental sequence Rn A n); 

we consider the following stopping times 

R 
The martingales M " arc uniformly integrable, and S < R therefore the 

n - n' 
r.v. MS is integrable (2.5). Furthermore on [0,Sn!, we have ( M ~  ( ( n; 

n 
and 

As the sequence (Sn) is a localizing sequence, the increasing process 

M: is locqlly integrable. 

2) Let At = 1 dMslllfi4s/$l. This sum is, for each w, a finite 
s<t 

sum. Take the sequence -(s,) constructed above and consider the stopping 



times 

The sequence (Tn) is.a localizing sequence, and 

1 
CO,T,I 

I ~ A ~  1 ( n + [A% I ( n + 2% E L . There exists theref ore a compen- 
n n 

sator B for A. Take V = A - B, V is both a local martingale and a 

process with finite variation. 

The jumps of B occur only at predictable times T. Stop all the 
S 

processes at the time Sn, and remember that M is a uniformly integrable 

martingale. If T is a predictable time, we get 

And the jumps of U verify 

It is now easy to see that the sequence (R,), Rn = inf (t; Iut 1 2 n), 
Rn 

is a localizing sequence and that U is bounded by n + 1. 

SEMIMARTINGALES 

2.22. Definition. A process X is a semimartingale if it is of the form 

X = X +.M + A, where Xo is F -measurable r.v., M is a local martin- 0 =O 

gale and A is a process with finite variation (remember that by definition 

both processes M & A vanish at t = 0). 

This definition contains no local integrability condition. It 

should not if we want the semimartingales to remain semimartingales when 

the probability P is replaced by an equivalent probability Q. 

Here again one cannot get more general processes by localizing the 



notion of semimartingale 

2.23. Theorem. Any process which is locally a semimartingale is a semi- 

martingale. 

Proof. We shall need the following useful lemma - 
2.24. a. Let X be a semimartingale, assume that the size of the -- 
lumps of X is bounded by a (a > 0 ) .  Then one can write X in a unique 

way as 

where Xo is F -measurable r.v., M is a local martingale, and A - =O 

a predictable process with finite variation (in fact, locally bounded 

variation by 2.18). 

Proof. The semimartingale is of the form X = X + N + B where N is a 0 

local martingale and B a process with finite variation. The r.v. Xo is 

uniquely determined. The jumps of the process B verify 

The increasing process Yt = suplABsl is locally integrable and by 2.20, the 
s2t 

variation of B is locally integrable. Let A be the compensator of B, 

and let M = N + B - A; M is a local martingale, A is a predictable 

Process with finite variation, and X = Xo + M + A. 

If X = Xo + E.i + A = X + M' + A' are two such decompositions of 
0 

the semimartingale X, A - A' is a local martingale, so A' is the cornfen- 

'"'Or A. But A being predictable is its own compensator and A ' *" 
!-''''' 2.23. The process X is locally a semimartingale. That is, 

Tn 
e ' ' ' * c s  a localiring sequence of stopping times (Tn), such that each 

!' *~~taartingale. 

* , :- 
. ~ L C  As X is cldlgg the process 



=n 
finite variation; for each n the process X - Y is a semimartingale 

with jump size smaller than 1. It can therefore be written in a unique 

way as zn - YTn = XO + Mn + An, where Mn is a local martingale and An 

is a predictable process with finite variation. The uniqueness of the 
An 

gives 

AniAn+l, and M n = M  n+l on Io,T,B. 

One can patch the An together, and the Mn together to get the processes 

A - C A I  M = ~ P ? I  The process A is predictable and 
nnDTn-l,TnB , ~ D T ~ - ~ , T ~ B '  

has finite variation, the process I.! is locally a local martingale, there- 

fore it is a martingale (2.15) and X = X + M + A + Y is a semimartingale. 0 

The following lemma is important. 

2.25. Lemma. Let X be a cldlsg adapted process; - 
exists a sequence of stopping times 

Tn 
and a sequence of semimartinga* 

Yn such that 

1) lim Tn = +a a.e. 
re+- 

2) xn= Y, on Bo,T,JI. 

Then X is a semimartingale. 

. :n = Yn - *n,T~{t2Tn~ + x~nl{tL~n~' So for each n the process 

Tn X is a semimartingale. If the sequence Tn is non decreasing, 2.23 says 

that X is a semimartingale. Otherwise, make the sequence non decreasing 

S by remarking that if S and T are two stopping times, and if X. and 

xT are both semimartingales, then xSAT and xSYT = xS + xT - xSAT are 

both semimartingales. 

2.26. .xxamples of semimartingales. 

1) any supermartingale (therefore any submartingale) is a semi- 

martingale: let X be a supermartingale, by 2.24 we just have to show 

that each X" is a semimartingale. But X: = E[xn[ft] + X: - E[X,~:~I 7 


