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Lecture One

Our object in these lectures is to describe the work of
Almgren and the author on the first variation of the k dimensional
area integrand in R” . We will work with a very general defini-
tion of k dimensionsl surface in R™ and will impose conditions
on the first variations of the areas of these surfaces which will
imply their rectifiability and differentiability.

We begin by giving a simple and very general definition of
surface. Let 6(n,k) be the Grassmann manifold of k dimensional
linear subspaces of R" . Let ¥ (R") be the weakly topologized
space of Radon measures on R” x G(n,k) . The elements of Vk(l!n)
are called k dimensional varifolds in R® . As we shall see, any
k dimensional surface in R" in the classical sense, with or with-
out singularities, oriented or not, may be thought of as a k dimen-
sional varifola in R® . Given V ¢ vk(mn) , we let |IV[|(A) =
= V(A x ®(n,k)) for A C R ; evidently, V]l is a Radon measure
on R".

Let Hom(R®,') be the algebra of linear endomorphisms of
RY . Ve mey identify G{n,k) with a compact nonsingular algebraic
subvariety of Hom(IR™,R™) by associating to any k dimensional
linear subspace of R , that is to any member of G(n,k) , the
endamorphism of R which orthogonally projects R™ onto this
subspace. Thus, given S5 € G(n,k) , we will consider 8 as a
linear subspace of R® or a linear endamorphism of Rr" s which=-
ever is convenient at the time. The space Ham(R®,R®) has a

natural inner product given by the formla



K.--Allard

*
AB = trace A °B , A, B € Ham(R®,R™) ;

here A* is the adjoint of A .

Let X(]Rn) be the vector space of smooth compactly sup-
ported R® valued functions on R . mn particular, if
geX(R®) and x ¢ RY  the totel differential Dg(x) is & mem-
ber of Hom(R",R") .

Let VeV, (R") . We define the first varietion distri-

bution

5V: (R — R

by the formula

sv(g) = [ Dg(x)-8dv(x,s) , g € x(R") .

In the terminology of Laurent Schwartz, 8V is a distribution on

B of type R™ . We now explain why we use the term "first

IR
variation". To do this we need to introduce the notions of Jaco-

bian and deformation.

Suppose F: R® — R® is smooth. We define the k dimen-

sional Jacobian of F
J,F: R? x 6(n,k) —> (t: 0 <t <)

by the formula

k area of S n (x: Ix[(l}

If one chooses an orthonormal basis VyseeesVy of 8 for which

<, ,DF {(x)> DF(x)> =0 , 1<i<j<k,

j’
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one sees easlily that

k
(1) I F(x,8) = ™ [Grf,-DF(x)>[ ;

Moreover, it is not hard to define a homogeneous polynomial func-

tion B, of degree 2k on Hom(R®,R™) such that

2
(2) 3 F(x,8)° = P (0F(x)*8), (x,8) € BR” x G(n,k) .
Now teke V ¢ vk(mn) and let

F#V(A) = JkF(x,S)dV(x,S) s

{(x,8): (F(x){DF(x) (8)) e A}

AT R® x 6(n,k) .

Then F#V is a Borel regular measure on R- x G(n,k) . If, addi-
tionally, F 1s proper, it is clear that F,V is a Radon measure
on R™ x €(n,k) ; that is, FyV e v (R .

A triple (g,h,K) is called a local deformation of R"
if € >0, h: (-&,e) x R® —> R™ 1is smooth, K is a campact
subset of R" and

h(t,x) =x 4f t=0 or xk&kK.
d

du ht-iu(x)lu =0
(t,x) « (~£,e) x R® . Evidently, h_ e %(R®) and h_ is a dif-
o 't

We set b (x) =h(t,x) and b (x) = for

feomorphism of R® for small t . Moreover, we have that

(3) 9h,(x,8) 1s smooth in (t,x,5) for t near 0 ;
d = L

W 3 tht("s),tao = Dﬁo(x) s .

Indeed, (3) follows fram (2) and (&) is verified by choosing an



W. K. Allard
orthonormal basis VyseeosVy of S such that
<vi,Dﬁo(x)> . <‘vj,Dl'1°(x)> =0, 1<i<j<k,

and then using (1) to calculste
d—Jh(xS) « 4 ; |v, + t<v, ,Dh_(x)>]|

L & ’
BRI e T BBy R 1% .

= <v,,0h (x)>+ v

421 1o i
= Dho(x) * 8.

Using (3) and (4) we establish the following formula for
Ve Vk(]tn) and any local deformation (e,h,K) of R :

(5) V() = & Mgy VIG5

for this reason &V 1is called the first variation distribution
of V.

We will now show how to associate a varifold, in a natural
way, to any submanifold of R” of locally finite area. We say M
1s & k dimensjonal submanifold of class p (L<p<w=) in R

if MC R™ and for every a € M there are class p functions
Qs R —> R® aa t:lin—-irl!k,andanapenneiynborhood
W of &a such that

veo(y) =5, yslik and WnHa‘\'nq)(Rk).

Whenever A C R™ and a e Clusurz A , we let Tan(A,a) be the

closed come with vertex 0 in R™ consisting of those vectors v
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in R" such that either v=0 or v # 0 and there are points
X, 3%p5..- € A~ (a) such that 1lim x, =a and

1 1 i-ow
Lim Ixi-al' (x;-8) = [v][™v . We let Nor(A,a) = {w: vw <0

i omw

for all v € Tan(A,a)} . Evidently, if M is as above,
Tan(M,a) € G(n,k) and Nor(M,a) € G(n,n-k)

for each a e M. Let ‘f“/‘k be the k dimensional Hausdorff meas-

n
ure on R~ ; we set

[M](A) = # %(x: (x,Tan(M,x)) € A} , AC R® x G(n,k) ,

and observe that |M| is a Borel regular measure on R x G(n,k).
Clearly, |M| e vk(mn) if and only if M intersects every
bounded open subset of R" in a set of finite k dimensional area.
From the change of variables formula of advanced calculus we have

that
(6) F#IM[ = |F(M)| for any diffeomorphism F of R" .

This motivates the definition of F# . Suppose M is a k dimen-
sional submenifold of cless 1in R", [M| € M (R™) and
(e,h,K) is a local deformation of R ; using (5) and (6) we see

that

- _ E- k
(n olu[(n)) = gg # a1 n K)] i |
We now suppose that

(8) M is a smooth k dimensional submanifold of R” with
boundary B .

By this we mean that M is a k dimensional submanifold of class
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in R™, that B = (Closure M) ~M , and that for each b € B
there are smooth functions o: JRk —_— IRn and : ]Etn —_— JRk s

and an open neighborhood W of b such that

vegp(y) =y, ye"]Rk and WnM:qua(Bkn{y: yk<0])

Clearly (M| e wk(m“) . We will now celculate &|M| in terms of
the mean curvature vector of M and the exterior normal to M
along B , which we now define.

Given a € M , we define the bilinear function
B(a): Tan(M,a) x Tan(M,a) —> Nor(M,a) , called the second funda-

mental form of M at a , by the requirement that
B(a)(v,w)u = =v + <u,<w,¥>> , u € Nor(M,a) , v, w € Tan(M,a) ;

here ¥: Tan(M,a) —> Ham(R™,R™) is the differential of
Nor(M,") at =a , when Nor(M,*) is considered as a function on M

with values in G(n,k) C Ham(R",R™) . We have that

(9) v+ <w,Dg(a)> = -B(a)(v,w)- &(a) , v, w e Tan(M,a) ,

whenever g ¢ X(R") and g(x) € Nor(M,x) for x e M ;

in fact, we may differentiate the equation g(x) =<g(x), Nor(M,x)>,

x €M , in the direction w at a to obtain

v« <w,Dg(a)> = v - <w,Dg(a)>,Nor(M,a)> + v « <g(a), <w,¥>

-B(a) (v,w)-g(a)

because <<w,Dg(a)>, Nor(M,a)> € Nor(M,a) .
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We define the mean curvature vector H(a) of M at a by

setting
H(a.) = Mﬁl € Nor(M,a) :

k
from (9) we have immediately that

(10) Dg(a)Tan(M,a) = -kg(a)+H(a) whenever g e X(RT)

and g(x) € Nor(M,x) for x e M

Finally, given b € B , we define v(b) € L2 R% 0 (x: x| =1
by the requirement
- v(b) € 8L 0 Tan(M,b) N Nor(B,b) .

We call v(b) the exterior normal to M at b .

We have the following basic formmla for &|M| :

(11)  slM|(g) =

= -k [ gx)-H(x)aN x + [ gb)-vm)aHE D, g e x(RD).
M B

We complete this lecture with the proof of this formula. In view

of the existence of partitions of unity, it will suffice to verify

that

(a) 5M|(g) = -k }14' g(x)-H(x)da ™ ®x  whenever g e X(R®)
and g(x) e Nor(M,x) for x e M

and that

(b) 5|M () = é g®) v®)at Xy whenever g € X(RD) ,

g(x) € Tan(M,x) for x e M ,
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E‘}. for some a € M UB there are smooth functions ¢: ]Rk — K
and y: R — I{k , and an open neighborhood W of a in Rr" s

such that
k
spt gC W, vop(y) =y for y e R~ ,

Wﬂcp(:ﬁk) if a eM
WNnM= X
Wwno(R™n {y: 3 <0}) if aeB.

Formula (a) follows immediately fram (10). To prove (b), we let

k

L. (¥) =y+t <geoly),(D¥)eo(y)>, (t,y) e R xR 3
b (y) = x+get o¥(x) - gov(x) , (t,x) € R x R® 3
Oi(y) = quJ(V,IRk) ’ ¥y € ]Rk .

Because h @ = @ef, , the naturality of the Jacobian implies thai

3, (8 o9) (7, BY) =t (1)3,¢, (v, BY), yeR";

with the help of (4) we compute

L o), EY|  =DEE )W) Y,  ye ®E.

t=0

Using (6) and (7) we see that

fk D(Otéo)(y')-JR1£ d#ky s if aeM;
M| (g) =
[ Dt )(y)-Ra W5 , if aeB.
{y: v, <0} =

If aeM, 5/M[(g) =0 since af, e X(RS) , so (b) is verified
in this case. Suppose now a € B. For any v € ]Rk and any

Y € le with ¥y = 0 we have that
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ay)vee, = o(ys(y: v = 0}) <v,Dop(y)> -veoly) 3
k k-1 k

here € is the k'th standard basis vector in ZIRk , and one
verifies the equation easily by teking v to be a multiple of e
and then orthogonal to e - Therefore,
Z k of k
I Dt )y) RE a#ly =
(y: v, <0}

= J aly) (y)-e a#ElL
{y: yk=0} = % v

= [ g®)-v(b) aME
B

because <i'°'(y) Do(y)> = gigly) for y ¢ RE .



_ 12 -

W. K. Allard

Lecture Two

Suppose V e Vk(:Rn) . We define a Borel regular measure

sV on B™ as follows:
if U 4is an open subset of R" "

lsvll(v) = sup {8V(e): g € X(B™), lgl <1 anda sptgcu) ;

if A is any subset of R" ,
lsvll(a) = inf {||sV]|(U): ACU and U is open).
In other words, |[6V] is the total variation of the operator b5V .
Let us suppose that HBVII is a Radon measure on R" 3 this means

that for every bounded open subset U of R™ there is a constant

C such that
8V(g) < ¢ sup{lg(x)|: x e B
for every g € X(R™) with sptgCU.
It is then elementary that BV has a unique extension, also denoted

&V , to the vector space of R™ valued bounded Baire functions

on R with compact support, which satisfies the requirement that

5V(e) = Lin oV(e,)

whenever €38, 3855--+ 8TE E uniformly bounded sequence of r"
valued Baire functions on IR™ supported in some fixed compact set

for which

lim g (x) = g(x) for all xe R".
i-ow
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As an example, if M,B,H,v are as in (11) of Lecture One

we have that

lslMll(x) = f lax)la® % + #5 Lk n )
KnM

for any compact subset K of 5 - g

The condition that ||5V] is a Radon measure, together
with a certain "dimension axiom", implies that V is rectifiable;
we say that a varifold V is rectifisble if there are continously
differentiable k dimensional submanifolds Ml’ME see. of RY such

that

: ,,,
V< = Myl -
g e

(Note that we allow repetitions in the list Ml’ME"" .
In order to formulate the "dimension axiom", we need to
make a definition. Let (k) = M ERY 0 (x: |x| <1}] . Given

v evk(nn) and a € R® , let

&(Ivl,0) = 1m LB ez
ry0 a(k)r

where B (a,r) 1s the closed ball centered at a of radius r .

For example, if M,B are as in (8) of Lecture One,

0 if aSMUB;
(llMlill;e) ={ 1/2 1£ aeB
1 if aeM.

-

If VeV (R") is rectifiable, &([Ivll,*) 1is & resl valued AE

measursble function and
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vl = # X5 (lvl,) 3

clearly, 6°(|V],x) >0 for |[V| ealmost all x ¢ R® ; this is a
basic fact in geometric measure theory. See [FE 2.10.19].

We now state precisely the

Rectifiability Theorem. Suppose V e vk(m“) and |6V is a

Radon measure. Then

(a) @k(llvll,x) e R for [[v[ almost all x e R ;

(b) 1f &(vl,x) >0 for |v| almost all x e R®,
then V is rectifiable.

Our "dimension axiom" is that the density @k(ltvll,-) be
essentially positive; it says, roughly, that the dimension of the
measure |[V| is af most k . We illustrate this condition by the

following

Example. Teke k < n and choose a Radon measure p on G(n,k) .
let V=HM"xpe v, (R") . It is clear that V is not recti-

fisble. However, for any g € X(R™) , we have

8V(g) = [ Dg(x)-S av(x,s)
= [ Dg(x)'s a M x aus
J (f pg(x)a A k)5 dys

1]

0

because [ Dg(x)d A ™x =0 , g having compact support. Assuming

u(G{n,k)) =1 , we see that |[[V] = #™ so that

ak(||V|| ,X) =0 for every x € R .
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The positivity of the density is preserved by weak conver-

gence in the sense of the following

Closure Theorem. Suppose V,,Vp,...,V € Vk(]Rn) , 0 is a posi-

tive continuous function on &’

lim V, =V in ¥ (RD)
i-)oui k

Lim sup ([[v,ll + llsv,[) (k) <o
i-ow

for every compact subset K of r" »

ek(llvill,x) >6(x) for |V, almost all x e R, i=1,2,...
Then

&(lvll,x) >6(x) for [v| almost a11 x ¢ R™ .

It is beyond tue scope of these lectures to give a camplete
proof of these theorems. In the next lecture, however, we will

derive all the geometric ingredients of their proofs.
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Lecture Three

Suppose V € ¥(R™) and [|5V]| is & Radon measure on R".
¥

For each a € JRn and each t € R we set

x-a  if [x-al <t ,

(x) =
c’a,t * 0 if t < Ix-al .

a, y(&) = WVlix: Ix-al <415 B, y(8) = 8V(E, 1) s

t) = - _ISL -8, . S) .
7a,v(t) _— Oilx-al St}lx al Is7(x-a)|" av(x,8)

We have the basic relation sbout

Change of mass in concentric balls:

s d75. V(t)

(1) S-Kaa,v(S) _ = I]_‘- tx.a,V t
%, (x) s Pag®

er ) w,

whenever distance (a,spt|[V]]) <r <s <o .

In proving (1) we suppose a =0 and write Q,B,y for

ao,V’ aa.,V’ 7o,V , respectively. For each € >0 we choose a smooth

function £ R® — R in such a way that

2. (x) — |xl
uniformly as €40 .
|x| grad fe(x) - x

Let v € C:(]R) and let o(t) = J‘: y(1)dt , t €e R . For each
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E>0, let ge(x) = m(i{g(x))x, x € R® . Note that g EIX(Bn}
and that

W,Dga(x)> == q)'(fE(x))v*gra.d fs(x)x + :p(fe(x))v 5 veR® 5

so that
Dg (x)-8 = @'(£.(x)) grad £ (x)'x -

1
- 9" (£ (x)) grad £ (x)-57(x) + k(£ (x)) .
Integrating with respect to V and letting €4 0 , we have that

[ o(t)aB(t) = [ @' (t)t ax(t) -

- [ o (t)ay(t) +k [ o(t)ax(t) .
Integrating by parts in this last expression, we see that

Jw(e)B(t)at =-f y(t)t qx(t) +
+ [ ¥(®)ay () +k [ y(t)alt)at

so that, in the sense of distribution theory,

B(t)dt = - tax(t) + dy(t) + x(t)dt 3

- B(t)at + ay(t) ;
B(t)at |, ay(t) .
dlogt'ka(t)=-ﬂ-ﬂ§%%§+%.

We integrate from r to s to obtain (1).

tae(t) - mx(t)dt

o(t) _k

aty) ~ § 9t

]
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Fram (1) we draw two basic corolleries:

(0 = ) <5 (6) e [0 lovim (a,6) o

2

whenever distance (a,spt[[V[]) <r <s < ;

(3) if Ce ¥ (R"), 6C =0 and r'kcxu’c(r) is constant as

r varies, then x € S for C almost all (x,S) .

Both these statements follow almost immediately from (1). We first
draw same consequences of (2). The first is that
(%) Sk(“V”,a.) € IR whenever lim sup <o .
ryo 2
This is an immediate consequence of (2). Note that, as a conse-
quence of the Besicovitch theory of symmetrical derivation ([FE 2.8,
2.9]), we have that
rim BYIB (o) 2 o vl almost a1l s € BP ;
V||B (a,r 2
ri{o
this is (&) of the Rectifiability Theorem of Lecture Two.
We have the follc.ing uppersemicontinuity property of the

density: If

. _ . n T g n
'l:.m V; =V in VH{(IR ), -lnn a; =a in R,
i 2w i=-»ow

and for some € >0
s||5Vi||]B (ai,r) < ||Vi||JB(ai,r) 5 o<r<e,

then

(5) Lim sup &°([Iv,l1,8) < & (IVll,a) .

i o
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In fact, whenever 0 <r <€ ,

r'kcz (r) >l:|_msupr1&1 V. (r)

i-ew 1

“ka (r) >
> (r-laca N F o | (r-la-ay]) (1-lag-al/x)*
b I
a()& (v, ll,2;) exp(-r/e) (1-la;-al/r)*

we let i > w and then let r{ 0 to obtain (5).

A very important consequence of (5) is the

Isoperimetric Inequality. Suppose V € vk(mn), [VI(B™) <« and

& (lIvll,x) >1 for |[V| almost a11 x € R™ . Then

(6) Ivil(e®) &V < clevii(m®) .
Here C is a constant depending only on n .

The proof is as follows. Suppose 1 <A <« and
s = (}\.EIV”(]RH)/CX(k))l/k . If ae R® is such that &(|[v],s) >1

we have from (2) that

e@fwﬁh} ﬁWﬁﬂm

> A

so that for some t(a) with 0 < t(a) <s

oV|[IB (a,t(a > E
V||]B %a t% ; ;
The inequality (6) now follows from the covering lemma of Besicovitch

in the form given by [FE 2.8.1L4].
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An immediate corollary of (6) is that

(1 MEeyED/E el la(x) |la# B + A 5L(p)]

whersrer M,B,H are as in (8) of Lecture One

and HEM) <w .

Using the inequality (6), one cen prove a Sobolov type
inequality for varifolds, and consequently for manifolds; we omit
the details.

Let us now consider the assertion (3). We assert that if
C is as in (3), the measure |[|C|| is homogeneous of degree k, that
is
(8) [ etallelx = ™ | o(rx)allclx

whenever 0 <r < and cpeC‘:(]Rn) @

To verify this, suppose f: R° ~ {0} —> {t: 0 <t <} is smooth

and homogeneous of degree 0 so that
grad £(x)-S(x) =0 for C almost all (x,S) .

Iet V, e Vk(IRn) be characterized by the condition that

£

Vo(A) = [, £(x)aV(x,5) for every Borel subset A of R® x G(n,k).

One readily verifies that SCf(gE) =0 for g, as in the proof of
(1) and argues as in the proof of (1) that t'kao c (t) is constant
>
as a function of t since B (t) =» (t) =0, 0<t <.
o,Cf o,C:E
The relation (8) is now & technical consequence of these observa-

tions.



