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Lecture One

Our object in these lectures is to describe the work of

A1lIIgren and the author on the first variation of the k <timensionaJ.

area integrand in En. We will work with a very generaJ. defini­

tion of k <timensionaJ. surface in En and will impose conditions

on the first variations of the areas of these surfaces which will

imp~ their rectifiabillty and differentiability.

We begin by giving a simple and very generaJ. definition of

surface. LetG{n,k) be the GrasSmaml manifold of k <timensionaJ.

linear subspaces of JR n. Let ~(E n) be the we~ topologized

space of Radon measures on ~n x G{n,k). The elements of Vk(E n)

are called k <timensional varifolds in JRn. As we shall 'Bee, azry

k <timensionaJ. surface in JR.n in the classicaJ. sense; with or with-

out si.ngula.rities, oriented or not, mq be thought of as a k <timen­

sionaJ. varit"ola. in JR.n. Given V E Vk(JRn) ,we let IIvll(A) =

= V(A X C(n,k» for A C JR.n ; evident~, IIvlI is a Radon measure

on En.

Let Hom( JR n,nP) be the algebra of linear endanorphisms of

En. We may identif'y G(n,k) with a compact nonsingular algebraic

subvariety of Hom(m n ,En) by associating to azry k <timensionaJ.

linear subspace of En, that is to any member of G{n,k) , the

endanorphism of JR. n which orthogon~ projects En onto this

subspace. Thus, given S E G(n,k) ,we will consider S as a

linear subspace of JR.n or a .linear endanorphism of En, which­

ever is convenient at the time. The space Hcm(JR. n ,JR.n) has a

naturaJ. inner product given by the formula
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*A·B = trace A °B

*here A is the adjoint of A.

Let X(JRn) be the vector space of smooth compactly sup­

ported E n vaJ.ued tunetions on En. In particuJ.ar, if

g e X(JRn) and x e JRn the total differential Dg(x) is a mem­

ber of Han(JRn,E n) •

Let V e Tk(JR n). We define the first variation distr!-

by the f'ormula

&V(g) =J Dg(x)·SdV(x,S) ,

In the te:nnino1.ogy of' Laurent Schwartz, &V is a distribution on

JRn of' type En . We now exp1.ain why we use the tenn "firs t

variation" • To CD this we need to introduce the notions of' Jaco­

bian and def'onnation.

Suppose F : JRn -.... JRn is smooth. We define the k dimen-

sional Jacobian of' F

by the f'ormula

JkF(x,S) = k area of' DF(x)[S n (x: Ixl <1.)], (x,S) e JRn X 4i(n,k) •
k area of' S n (x: Ixl < 1.}

If' one chooses an orthononnal basis of' S f'or which
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one sees easily that

(1.)
k

JkF(x,S) = n l~i;DF(x»1 •
i=1.

Moreover, it is not hard to define a hanogeneous polynanial f'unc­

tion Pk 01; degree 2k on Hom(En,]Rn) such that

(x,S) E lRn
X G(n,k)

FHV(A) = J JkF(x,S)dV(X,S) ,
(x,S): (F(x),DF(x)(S» E A} -

A C ]Rn X G(n,k) •

Then FHV is a Borel. regu1.ar measure on ]Rn X G(n,k). If', addi­

tionaJ..1y, F is proper, it is c1.ear that FHV is a Radon measure

on ]Rn X G(n,k) ; that is, FHV E '¥k(]Rn) •

A trip1.e (I::,h,K) is called a l.ocal deformation of En

if I:: >-0, h : (-1::,1::) X ]Rn ~]Rn is smooth, K is a canpact

subset of ]Rn and

h(t,x) = x if t = 0 or x _ K •

We set ht(X) .. h(t,x) and ht(x) .. ~u ht+u(X) lu .. 0 for

(t,x) c; (-1::,1::) X En. Evidently, he E X(]Rn) and ht is a dif­

feomorph:l.am of :mn for lJlD&11. t. Moreover, we have that

lnaeed, (3) follows f'l'CIIll (2) and (4) is verified by choosiJlg an
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orthonormal basis v1' •• ' ,vk of S such that

<vi,DhO(X» • <Vj,Dho(X» = 0 ,

and then using (1) to calculate

l=5 i<j=5 k ,

d k
dt i~l IVi .+ t<Vl'Dho(X) >1 It =0

k
1: <vi,Dil (x) .. vi

i=l 0

= nho(X)' s .

Using (3) and (4) we establish the following formula for

V • V
k

( E n) and s:ny locaJ. deformation (e ,h,K) of En:

for this reason 5V is called the first variation distribution

of V.

We will now show how to associate a var1fo1d, in d. natural

wl!I(f, to s:ny snbman1fold of :m n of loc~ finite area. We SB;y- M

is a k dimens!onaJ. submanifo1d of class p- (1 =5 P=5 -) in iR n

if MC :mn and for every a € M there are class p f'Uncti0D8

cp: :mk~ En and t: En~ E k , and an open ne:lghborhood

W of a such that

toq>(y) = y, k ky € E "Dd W n M = W n q>(E ) •

Whenever A C:mn and a € C1;;sur~ A , we let Tan(A,a) be the

closed cone with vertex 0 in En consisting of those vectors v
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in JR n such that either v = 0 or v F 0 and, there are points

such that lim x. = a and
i-+oo J.

lvi-Iv. We let Nor{A,a) = (w: v·w < 0

~,x2' ••• e A - (a)

lim /xi-al-l{xi-a)
i-+oo

for all v e Tan{A,a») • Evident~, if M is as above,

Tan(M,a) e G{n,k) and Nor(M,a) e G{n,n-k)

for each a eM. Let 14k be the k dimensional Hausdorff meas-

ure on JR n ; we set

IMI (A) = Hk(x: (x,Tan{M,x» e A) , A C JRn x G{n,k) ,

and observe that IMI is a Bo:l"el regular measure on ]R n x G(n,k).

Clear~, IMI e Yk (JRn) if and o~ if M intersects l/EVery

bounded open subset of JR n in a set of finite k dimensional area.

Fran the change of variables formula of advanced calculus we have

that

(6) F#IMI = IF(M)I for arry diffeomorphism F of JRn.

This motivates the definition of F#. Suppose M is a k dimen­

sional submanifold of class 1 in En, IMI e Yk(E n) and

(€,h,K) is a local defonnation of JRn; using (5) and (6) we see

that

(1) 8IM/(ho) = ~t#k[ht{M n K)]lt=o.

We now suppose that

(8) M is a smooth k dimensional submanifold of En With

boundary B.

By this we mean that M is ~ k dimensional submanifold of class 00
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n
in E ,that B = (Closure M) - M , and that for each b E B

k n n kthere are smooth f'unctions <p: JR ~ lR and ,: JR ~ lR ,

and an open neighborhood W of b such that

,o<p(y) = y, and k
W n M = W n <p(E n (y : Yk < 0)

ClearJy IMI E Wk(JR n) _ We will now calculate 81MI in terms of

the mean curvature vector of M and the exterior normal to M

along B , which we now define_

Given a EM, we define the bilinear f'unction

B(a): Tan(M,a) X Tan(M,a) ~ Nor(M,a) , called the second f'unda-

mental form of M at a, by the requirement that

B(a) (v,w)-u = -v • ~,<w,'I'» , u E Nor(M,a) , v, w E Tan(M,a)

here '1': Tan(M,a)~ Han(JR n ,JR n) is the differential of

Nor(M, - ) at a, when Nor (M,- ) is considered as a f'unction on M

with values in G(n,k) C Hom(JR n ,lR n) _ We have that

(9) v- <w,Dg(a» = -B(a) (v,w) - g(a) , v, w E Tan(M,a) ,

whenever g E X(JRn) and g(x) E Nor(M,x) !'or x EM

in fact, we m8¥ differentiate the equation g(x) = <g[x} , Nor(M,x» ,

X EM, in the direction w at a to obtain

v - <w,Dg(a» = v - <<w,Dg(a»,Nor(M,a» + v - <g(a),<W,'I'»

= -B(a) (v,w) -g(a)

because <<w,Dg(a», Nor(M,a» E Nor(M,a)
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We define the me!lll curvature vector H(a) of M at a- by

setting

H(a) = trac~ B(a) € Nor(M,a)

from (9) we have immediate~ that

(10) Dg(a)'T!Ill(M,a) = -kg(a)'H(a) whenever g € X(JR n)

!Illd g(x) € Nor(M,x) for x € M

Fin~, given b € B ,we define V(b) € fil-l = En n (x: [x] =l)

by the requirement

- V(b) € fil-l n T!Ill(M,b) n Nor(B,b) •

We call V(b) the exterior normal to M at b

We have the following basic formula for 81MI

(11) 81MI (g) =

= -k J g(x).H(x)dHkx +J g(b)'V(b)d#k-~, g € X(JR n).

M B

We complete this lecture with the proof of this formula. In view

of the existence of partitions of unity, it will suffice to verif'y

that

(a) 81MI (g) = -k J g(x) 'H(x)d1:'t'kx whenever g € X(E n)

M

and g(x) € Nor(M,x) for x € M

and that

(b) 8IMI(g) = J g(b)'V(b)dNk-~ whenever g € X(E n) ,
B

g(x) € T!Ill(M,x) for x € M ,
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and for some a eMU B there are smooth f'unctions cp: :m k ~ lIf
--"T

n k nand 1jr: :m .~ :R ,and an open neighbor.hood W of a in :m ,

such that

spt g C W , 1jrocp{y) =y kfor y e JR ,

. if a e M

if aeB.

Formula (a) follows immediately from (10). To prove (b), we let

~t(Y) = y+ t <gocp(y) ,(D1jr) ocp(y) > ,

ht(Y) = x+cpo~t01jr(x) - cpo1jr{x) ,

k
a(y) = JkCP{y,m ) ,

(t ,y) e E x E k ;

(t,x) e :m x :mn ;

y e :mk

Because ht ocp = cpo~t ' the naturality of the Jacobian implies that

with the help of (4) we compute

kye E

Using (6) and (7) we see that

. k kIk D(a~ )(y)O:lR d # y , if' a eM;
:m 0

I D(ae )(y)·mkd -H ky , if a e B •
(y: Yk < oj 0

If aeM,

in this case.

• k
o/MI(g) = 0 since a~o e x(m ) , so (b) is verified

Suppose now a e B. For any v e :m k and any

k
Y e:m with Yk = 0 we have that



- 11 -

W K . Allard

here ~ is the k'th standard basis vector in :IRk, and one

verif'ies the equation easily by taking v to be a multiple of' ~

and then orthogonal to ~. Theref'ore,

(y:
J D(ato)(y)·:IRk d f:/- ky =

Yk < o)

• #k 1J a(y)so(Y)·~ d - Y
(y: Yk=o)

J g(b) ·V(b) d #.}-~
B
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Lecture Two

Suppose V e V
k

(:Rn)

[ev] on JRn as follows :

We define a Borel regular measure

if U is an open subset of JRn ,

[ev] (u) = sup (BV(g): g e X(E n), ltd <1 and spt g C U}

if A is any subset of JRn ,

IIBvlI(A) = inf ( IIBvll (U): A C U and U is open).

In other words, IIBvl1 is the totaJ. variation of the operator BV.

Let us suppose that II BV II is a Radon measure on JR n ; this means

that for every bounded open subset U of JR n there is a constant

C such that

for every g e X(JRn) with spt g C U

It is then elementary that BV has a unique extension, aJ.so denoted

BV , to the vector space of JR n vaJ.ued bounded Baire functions

on JRn with compact support, which satisfies the requirement that

BV(g) = lim BV(gi)
i-t oo

whenever are a:unifo~ bounded sequence of

valued Baire functions on JRn supported in some fixed compact set

for which

lim gi (x) = g (x) for aJ.l x € JR n •
i~oo
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As an example, if M,B,H,v are as in (11) of Lecture One

we have that

\IoIMI II(K) J \H(x)\d-#kx + -j4.k-l(K n B)
KnM

for a:rry compact subset K of ]Rn •

The condition that II oVII is a Radon measure, together

with a certain "dimension axiom", implies that V is rectifiable;

we sFJ¥ that a varifold V i s rectifiable if there are continously

differentiable k dimensional submanifolds ~ ,M2,. • • of En such

that

00

(Note that we allow repetitions in the list ~,M2'.••. )

In order to formulate the "dimension axiom", we need to

make a def'inition. Let a(k) = -# k[]Rk n (x: Ixl < l}). Given

V e Yk(]Rn) and a e mn , let

rf-( IIvll ,a) = lim
r~O

IIvlI:rn (a.r)

a(k)rk

where !l (a,r) is the closed ba.l1 centered at a of radius r .

For example, if M,B are as in (8) of Lecture One,

{

0 if a~MUB
rf-(IIIMIU;a) = 1/2 if a e B

1 if a e M

If' V e ~ (]Rn) is rectifiable, rf-( IIvll,· ) is a real valued 11k

measurable function and
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IIvll = 1>1 kU:f( IIvll,·) ;

c1ear~, ~(IIVII ,x) > 0 for IIvll almost all . x 10 ]Rn ; this is a

basic fact in geometric messure theory. See [FE 2.10.19].

We now state precise~ t he

Rectifiability Theorem. Suppose V 10 Y
k

(]Rn) and 115Vll is a

Radon measure, Then

(a) ~(IIVIl,x) 1O]R for IIvll almost all x 10 ]Rn ;

(b) if ~(lIvll ,x) > 0 for IIvll almost all x 10 :R n ,

then V is rectifiable.

Our "dimension axiom" is that the density ~(IIVII,.) be

essenti~ positive; it sa;ys, ro~, that the dimension of the

measure [v] is at. roost k . We illustrate this condition by the

following

Example. Take k < n and choose a Radon measure I.l on G(n,k) .

Let V = fin x I.l 10 Yk(]Rn). It is clear that V is not recti­

fiable . However, for any g 10 X(]Rn) , we have

5V(g) = f Dg(x)·S dV(x,S)

= If Dg(x) ·S d Hnx dI.lS

= f {f Dg(x)d f:{.nx)·S dI.lS

= 0

because f Dg(x)d 1-1 nx = 0 ,g having compact support . Assuming

I.l(G(n,k» = 1 , we see that IIvll = #- n so that

ef( IIvll ,x) = 0 for every x 10 ]Rn .
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'('he positivity of t he density is preserved by weak conver-

gen ce in t he sense of the following

Closure Theorem. Suppose Vl'V2' .•• ,V € Vk (:JR n)

tive continuous function on IRP

lim V. = V in 1':k(:JR
n

). J.J.-+OO

l~ sup (IiVili + lIovill)(K) < 00

J. -+ 00

for every compact subset K of

e i s a posi-

n:JR ,

ek ( lI v . lI , x ) > e(x ) for IIvJ..1I almost; all x € JRn, i = 1,2 , .••.
J. -

Then

Eh IIv lI ,x) ~ e(x) for IIvlI aJlnos t all x € JR n .

I t i s b eyond "(;u,=, s cope of these l ectures t o gi ve a complet e

proof of t he s e theorems . In the next lecture, however , we will

deri ve all the geomet r i c i ngredient s of their pr oof s .
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Lecture Three

Suppose V € \OR n) and 115vII is!j. Radon measure on :Rn •

For each a € :ffin and each t €:ffi we set

if Ix-al ~ t ,

if t < Ix-al
~a.t(X) = ix:a

a v(t) = IIvllex: Ix-al ~ t}a, ~ V(t) = 5V(S t)a, a.

We have the basic relation about

Change of mass in concentric bails:

s d7a,V(t)
s-ltx . (s) exp J

tna,v(t)
(1) a,V r

r-I£ v(r) s 13a,V(t)a, expJ dt
tn V(t)r a,

whenever distance (a,sptllvll) < r < s < 00

In proving (1) we suppose a = 0 and write a,~ ,7 for

a ·V' t3 n' 7 V' respective~. For each e: > 0 we choose a smooth
0, a.,v 0,

fUnction f e:: :ffin ~:ffi in such a way that

fe:(x) ~ Ix]
unifo~ as e: ~ 0 •

Ixl grad fe:(x) ~ x

Let ", e C ~(:ffi) and let q>(t ) = t.; ",(T)dT, t € :ffi • For each
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e > 0 ,let ge(x) = cp(±:e(X))X' x € JR
n " Note that ge € X"(R n)

and that

so that

Dge(x)"S = cp'(f'e(X)) grad f'e(x)"X -

1
- cp'(f'e(x)) grad f'e(X)"S (x) + kcp(f'e(x)) "

Integrating with respect to V and letting e ~ 0 , we have that

J cp(t)~(t) = J ~'(t)t dl(t) -

- J cp'(t)dr(t) + k J cp(t)da(t)

Integrating by parts in this last expression, we see that

1 *(t)~(t)dt =-1 ¥(t)t dl(t) +

+ 1 *(t)dr(t) + k 1 ¥(t)a(t)dt

so that, in the sense of' distribution theory,

~(t)dt = - tdl(t) + dr(t) + ~(t)dt

tdl(t) - ~(t)dt =- ~(t)dt + dy(t)

daft~ _ ~ dt = _ ~(t~d) + dr(t) "
a t t it:X t 1iiTtT'

We integrate:f'rom r to s to obtain (1)"



- 1[; -

w. K. Al.rar-d

From (1) we draw two basic corollaries:

(2) -k () -k () s~VEatr l): V r ::: s l): V s exp J V.", t dta, a, r oW a,

whenever distance (a,sptIlVID < r < s < 00

(3) if C € Vk(JRn), 8C = 0 and r-1txo,C(r) is constant as

r varies, then x € S for C almost all (x,S)

Both these statements follow almost immediately from (1). We first

draw some consequences of (2). The firs+. is that

(4) ~(lIvll ,a) € JR whenever lim sup 118VIIJB ta,r) < 00

r+o~

This is an immediate consequence of (2). Note t hat , as a conse-

quence of the Besicovitch theory of symmetrical derivation ([FE 2.8,

2.9]) , we have that

lim 118v IIE (a,r) €:ffi for IIvll almost all a € JRn
r+o~

t his is (a) of the Rectifiability Theorem of Lecture Two.

We have the follc:,.i.ng upperse.micontinuity property of the

density: If

lim Vi=V in ~(JRn),
i~oo

and for some e > 0

lim a
i

= a in :ffin ,
i~oo

then

eIl8v. II E (a . , r ) < IIV.IIE(a.,r) ,
~ ~ - ~ ~

0 < r < e
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In fact, whenever 0 < r ~ E ,

and

~ (r-Ia-ail)-kaa.v. (r-Ia-ail) (l-Iai-al/r)k
~ ~

> a(k)ak(IIV.II,a.) exp(-r/E) (1-1 a._al/r)k- ~ ~ ~

we let i ~ 00 and then let r ~ 0 to obtain (5).

A very important consequence of (5) is the

Isoperimetric Inequality. Suppose V € '¥k(JRn) , IIvll(E n) < 00 and

r}-(IIvll,x) > 1 for [v] almos t all x e JRn. Then

Here C is a con~tant depending only on n.

The proof is as follows. Suppose 1 < A. < 00 and

s = IT a € JRn is such that r}-( Ilvll ,a) Z 1

we have from (2) that

e JS lIoVIlJB (a,t) dt > r}-(lIvlI,a~ a(k)sk
xp o~ - a vs)a,

s o that for some t(a) with 0 < t(a) < s

lIovllJB fa,tfaB > log A. •
MJB a , t a - s

The inequality (6) now follows from the covering lemma of Besicovitch

in the form given by [FE 2.8.14].
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An immediate corollary of (6) is that

(7) -H k(M) (k-1)/k ~ c[J IH(x) IdHkx + H k-1(B)]
M

wheID"er M,B,H are as in (8) of Lecture One

and ftk(M) < cc

Using the inequality (6), one can prove a Bobo.Iov type

inequality for varifo1ds, and consequently for manifolds; we ami t

the details.

Let us now consider the assertion (3). We assert that if

C is as in (3), the measure Ilcli is homogeneous of degree k, that

is

(8)

whenever 0 < r < cc and cp € C. <Xl(]Rn)
o

To verify this, suppose f: ]Rn - {a} ~ {t: 0 ~ t < <Xl} is smooth

and hanogeneous of degree 0 so that

grad f(x)·S(x) =0 for C almost all (x,S).

Let Vf € Tk(mn) be characterized by the condition that

Vf(A) = fA f(x)dV(x,S) for every Borel subset A of ]Rn x G(n,k).

One readily verifies that 5Cf(ge) = 0 for ge as in the proof of

(1) and argues as in the pl'OOf of (1) that t -Itx c (t) is constant
0, f

as a :f'unction of t since (3 C .(t ) = r C (t) = 0, 0 < t < <Xl •
0, f 0, f

The relation (8) is now a technical consequence of these observa-

tiona.


