E. Casari (Ed.)

Aspects of Mathematical

CIME Summer Schools

48
Varenna, Italy 1968

FONDAZIONE

@ Springer CIME

E. Casari (Ed.)

Aspects of Mathematical Logic

Lectures given at a Summer School of the

Centro Internazionale Matematico Estivo(C.I.M.E.),
held in Varenna (Como), Italy,

September 9-17, 1968

FONDAZIONE

@ Springer CIME

ROBERTO CONTI

C.ILM.E. Foundation

c/o Dipartimento di Matematica “U. Dini”
Viale Morgagni n. 67/a

50134 Firenze

Italy

cime@math.unifi.it

ISBN 978-3-642-11078-8 e-ISBN: 978-3-642-11080-1
DOI:10.1007/978-3-642-11080-1
Springer Heidelberg Dordrecht London New York

©Springer-Verlag Berlin Heidelberg 2010

Reprint of the 1*ed. C.I.M.E., Ed. Cremonese, Roma 1969

With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

CENTRO INTERNAZIONALE MATEMATICO ESTIVO

(C.I.M.E.)

3° Ciclo - Varenna dal 9 al 17 Settembre 1968

"ASPECTS OF MATHEMATICAL LOGIC"

Coordinatore : Prof. E. Casari

H. HERMES

D. KUREPA
A, MOSTOWSKI
A, ROBINSON

A.SOCHOR - B. BALCAR :

Basic notions and applications of the
theory of decidability.

On several continuum hypotheses.
Models of set theory

Problems and methods of model theory
The general theory of semisets.

Syntattic models of the set theory.

pag.

n

1
55
65
181

CENTRO INTERNAZIONALE MATEMATICO ESTIVO
(C.I.M.E.)

H. HERMES

BASIC NOTIONS AND APPLICATIONS OF THE THEORY OF DECIDABILITY

Corso tenuto a Varenna dal 19 al 17 Settembre 1968

BASIC NOTIONS AND APPLICATIONS OF THE THEORY OF DECIDABILITY

by

H. Hermes (Freiburgr- Germany)

Preliminary Remarks. The first three lectures contain an exposition of the

fundamental concepts of some main theorems of the theory of recursive functions.
One of the more difficult theorems of the theory of recursive functions is Fried-
berg-Mudniks theorem which asserts the existence of non-trivial enumerable
degrees. In Lectures 4 and 5 we prove this theorem, following the treat-
ment given by Sacks, but stressing somewhat more the combinatorial part
of the proof (Lecture 4). Lecture 6 deals with problems in the theory of
primitive recursive functions. As a typical example of the application of the
theory of recursitivy we give in Lecture 7 in detail a proof for the unsolva-
bility of the domino problem in the simplest case of the origin-restricted
problem and show in Lecture 8 how the domino problem is connected with
the AV/\- case of the Entscheidungsproblem.

Lecture 6 has been given before Lectures 4 and 5, The inter-
change is due to systematical reasons,

The interdependece of the lectures may be indicated as follows:
1 2 3 4 5,2 6, 2 7 8.
Contents

Lecture 1: Computability, Enumerability, Decidability

Lecture 2: - Recursiveness, Turing Machines, Degrees of Unsolva-

bility

Lecture 3: Kleenes' Normal Form Theorem; the Jump Operator

Lecture 4: Theorem of Friedberg-Muc‘:/nik, Part I

Lecture 5: Theorem of Friedberg- Mugnik, Part II

Lecture 6: Primitive Regursive Functions

Lecture 7: The Domino P’roblem

Lecture 8:/\V/\- Case of the Decision Problem of Predicate Calculus.

Bibliography

H. Hermes

1. Algorithmic procedures and calculi always have been an essential
part of mathematics. In the last thirty or forty years a theory has been develo-
ped in order to study the fundamental notions which are connected with this
part of mathematics. Everybody knows algorithmic procedures for computing
the sum of two decimals, The existence of such procedures shows that the

sum-function is a computable function, If a mathematical theory T is given based

on a finite number of axioms and on the rules of first-order logic calculus,
we may generate. one by one the theorems of T. Hence the set of theorems of
T is a generable set,. Using lexicographical principles it is possible (o get

h
theorems in a sequence, so that we may speak of the 0t , ISt, an,

theorem of T. In this way we get an (effective) enumeration of T, and we
call T an enumerable set, The notions of generability and enumerability may be
identified. For any natural number it is decidable whether it is a prime or

not. Hence the set of primes is called a decidable set,

The concepts of computability, enumerability and decidability are
narrowly related (cf.no.4). In order to be able to develop a mathematical
theory concerned with these notions it is necessary to replace intuitive con-
cepts by precise mathematically defined concepts., For each of these concepts
different definitions have been proposed and proved to be equivalent to each
other, Practically everybody is convinced that the precise notions correspond
"exactly" to the intuitive concepts. This fact, the so-called Church's Thesis
(1936), may be compared with the statement that there exists no perpetuum
mobile. In the following (cf.no. 5,6,8 and Lecture 2) we give several precise
concepts which lead to definitions of enumerability and computability., Refer-

ring to such definitions we have notions like Turing-computability, recursis

veness,/;, -recursiveness etc. But since these concepts can be proved to be

extensionally equivalent, we later on may interchange them arbitrarily.

H. Hermes

2. In order to compute (calculate) it is necessary to manipulate
objects, i,e. to treat objects by manual means. Not every set S has the
property that every element of S can be used in this way (e.g. the classi-
cal set of real numbers)., A set of objects which can be used for computa-

tion may be called a set of manipulable objects, Typical example for mani-

pulable objects are the words composed of letters from a given finite alpha-
bet A. If A has only one element, these words may be identified with the
natural numbers., An infinite set S of manipulable objeéts is denumerable.
If S1 and 52 are two (infinite) sets of manipulable objects there exists
a 1-1 mapping f from S1 onto 82 which is effective in both ways,
i,e. : if any x S1 is given it is possible to compute f(x), and if any

y 82 is given it is possible to compute f-l(y) . Such a mapping is often
called a Godelization, especially if 52 coincides with the set of natural num-
bers (in this case f(x) is called the Gbdel number of x). In principle it
is irrelevant on which (infinite) set of manipulable objects the theory is
based. Very often (following G&del) we choose for this purpose the set

of natural numbers. But many applications may be much easier if other sets
are chosen. - We speak of an enumerable or of a decidable set S only if a

fixed set S' of manipulable objects is given and if SCS!',

3. For most questions concerning computability if is irreleveant
whether we consider 1-place or n-place functions (or similarly l-place or n-
place predicates). Let us consider e,g, n=2 , It may be easily shown that

there exist computable functions 62, 6’21, 6’22, s.t.

x for each natural number x

(1.1) dz(elm(x): Gg3(x))
(1.2) 6’21(GJZ(x, ¥)) f = x for each pair x,y of natural numbers
(1.3) Gyo(FH(%,) =y

Using these functions we may associate with every 2-place function: f

a 1- place function g, defined by

-6 -
H. Hermes

(1.4) gx) = f(G,(x), & yy(x)).
Now we get
(1.5) 5y) = elEytuy) -

As far as questions of computability are concerned we may re-
place f by g.
4, The following statements hold intuitively:
(1.6) A set is enumerable iff it is void or the range of a computable func-
tion,
(1.7) A 1-place function is computable, iff the 2-place relation R is
enumerable, where R holds for y and x iff y=f(x).
(1.8) A set S 1is decidable iff S and its complement are enumerable,
(1.9) A set S is decidable iff its characteristic function f is computable,

f (x) has the value 0 or 1 according as x&S or X¢S,

5. Here and in no. 6 we give two definitions of the notion of enu-
merability. Here we are concerned with sets whose elements are words over
a finite alphabet.

Let be given four mutually disjoint alphabets A, B, C,D. The ele-
ments of A are called constants, the elements of B variables, the elements
of C predicates., With each predicate is associated a natural number n> 1
as its place number, D = {; ,—‘*}. The words over A called proper words,
st

17°°""'n

are terms, then Ptl;,..;tn is called an atomic formula, If pl,p2,

are atomic formulas, then the words P;sP;=>Py, p1—>p2-->p3 etc, are called

the words over AvB terms,If P is an n-place predicate and t

formulae, Rule 1 permits the transition from a formula F to a formula G

by substituting a proper word for a variable, Rule 2 the transition from an
atomic formula p and a formula p—>F to the Formula F. A formal
system (Smulyan) is given by a finite set 4) of formulae, A formula is
derivable in a formul: system (p , if it can be obtained by applitations of
Rule 1 and/ or Rule 2, starting with the elements ofCP. An n-place

relation R between words over a finite alphabet A0 is enumerablé (in the sen-

-n -
H. Hermes

se of Smullyan) iff there is a formal system(z), belonging to the alphabets
A, B, C,D, where Ao C A, and an n-place predicate P, s.t. for each

n-tuple w ..,w_of words over A the formula Pw_;...;w is deriva-
n o 1 n

1’
ble in ¢ iff R holds for w_,..., W

1 n’

6. Another way to define enumerable relations is given by Fitch's
minimal logic, We start with the 3-letter alphabet {(,)’*'}. A word over
this alphabet is called an expression if it coincides with % , or if it may
obtained, starting with % , by the rule which permits to go over from
words a and b to the word (a,b). (% (%##)) is an example for an expres-
sion, Take the set of all expressions as the underlying set of manipulable
objects. We choose certain expressions and call them = , + ,/\,V,V, 11,
12, 13,'... . With these expressions are connected certain rules, We confi-
ne ourselves here to indicate the rules connected with =, v, V, and 11:
(1.10) For each expression a we may write down the expression =aa(this

is an abbreviation for ((=a)a) (parentheses to the left, also in the

following).
(1.11) For all expressions a,b we may go over from a to Vab.
(1.12) For all expressions a, b we may go over from b to Vab,
(1.13) For all expressions a b we may go over from ab to Va.
(1.14) For all expressions a,b,c,d, where a is variable, and d the re-

sult of substituting ¢ for a in b, we may go over from d to

11 abc .
(These rules are similar to rules of logic, hence "minimal logic".) An
expression is called derivable if it can be obtained by the rules. E.g. the
derivation (% (), (Va),VV) shows, that (yv\) is derivable . A relation
T Dbetween expressions is (Fitch-) enumerable iff there is an expression
r s.t. for each n-tuple al, ...,an of expressions, the expression

ral...an is derivable iff R holds for a ,a

1703y

-8 -

H. Hermes

7. The last example shows that the enumerable sets (of expressions)
are manipulable themselves, because they may be given by expressions,
and each expression determines such an enumerable set, Unfortunately we
do not have this pleasant fact for the computable functions. In order to
show this let us assume that we have an enumerable set S of words
s.t. (a) each element of S determines effectively a unary computable fun-
ction and that (b) each such function may be given in this way (think of
the elemets of S being descriptions of the computing processes), Then we
get a contradiction as follows: We get in a effective way for each
n a prescription how to compute a certain unary function fn . We intro-
duce a new function f by postulating that f(n) = fn(n)+1. According to
our assumptions there is an m s,t. f=fm. This leads to a contradiction
for the argument m ., (A diagonal argument of this kind is often used in
the theory of recursive functions).

It is possible to remedy this defect by enlarging the set of functions
hitherto considered, Until now we only have admitted total functions.
The domain of an n-ary total function consists of all n-typles of objects

in question. We now consider partial functions. The domain of an n-ary

total function consists of an . n-ary partial function does not necessarily
have all n-tuples as elements, it may even be void. Intuitively a partial
function is called computable, if there is a procedure which terminates
for a given argument iff the function has a value for this argument which
determines in that case that value,

With partial function we do not get the contradiction of no. 7, It
is only possible to conclude that f is not defined for the argument m,

If we admit also partial functions, the statement (1.7) remains
true, (1.6) may be simplified
(1.15) A set is enumerable iff it is the range (or the domain) of a com-

putable partial function.

-0 -
H. Hermes
8. There are different important precise definitions for computabili-

ty for partial functions., For Turing-computability and /a«-recursivity cf,

Lecture 2, Here we mention only the concept of Markov's algorithm.

Let be given a finite alphabet A and words Ai’ Bi (i=1,...,p) over A,

A Markov's algorithm 1is given by sequence

(1.186) Ai—,>(,)Bi (i=1,...,p),

where "(.)" indicates that there mlay be a dot behind the arrow or not. (1.16)
determines a unary partial function. f . The domain and range of f are con-
tained in the set of all words over A, For any word W over A we deter-
mine uniquely a sequence W=W(O), W(l), W(z),... of words., f is defined
iff the sequence terminates, and in that case f(W) is the last element of
the sequence.,

If W(n+1) is defined we will have a uniquely determined number

(l<pn+1<p), which describes in the sequence (1.16) the rule which is

pn+1
(n) to W(n+1) .

responsible for the transition from W

We call a word K a part of L iff there are words Kl’ K2 s.t.

L=K1KK2. Given K, there may be different decompositions of L of this

kind, If K1 has minimal length, the decomposition of L is uniquely deter-

mined and called the normal decomposition,We now procede to define
W(n+l)

and pn+1:
n+1
w() and P41

are only defined if there is an is.t. Ai is a part
h
of W(n) and if n=0 or (n>0 and the ptn term of (1.16) has no dot) . In

this case let be p the smallest i, &.t. Ai is a part of W(n) . Let be

n+1
W(n)=K1AiK2 the normal decomposition of w(n) relative to Ai' Now W(n+lg

= K1 BiK

9
A unary partial function g(whose domain and range is contained in
the set of 211 words over a finite slphabet) is called computable by a Mar-

kov's algorithm over an alphabet A, iff AOCA and if for each word W

- 10 -

H. Hermes

over Ao(a) if f (the function determined by this algorithm) is defined for W
if f(W) is a word over Ao' then g is is defined for W and g(W)=f(W), and
(b) if g is defined for W then also f is defined for W and again f(W)=
=g(W).

REFERENCES: Davis: [1], Hermes [1_] (also for the minimal logic
of Fitch),

Kleene [1] , [2] , Markov [1], Rogers [1:) , Smul-

lyan [1] .

Lecture 2: - Recursiveness, Enumerability, _Q_e_gi_dability_.

0
1 0
the O0-place function with value 0, S° the 1l-place successor-function and

1. Inno. 1 we use natural numbers as manipulable objects, Let be C

U? the n-ary function whose value coincide with the i-th argument
1

(i=1,...,n), The functions Cg, ST, U? are called initial functions, The

initial functions are computable total functions.

The process of substitution leads from function g, hl' ey hr to

a function f = g(hl, ""hr)’ where
(2.1) f(xl, . g(hl(xl, ceesX)senn, bo(x, X)) -

Substitution preserves totality and computability.

The process of primitive recursion leads from functions g, h to

a function f, where

(2.2) £ s e en X, 0) = 80X e X)),

H. Hermes

1
(2.3) fxpp s Xy ST =R XLy B, L XL).

Primitive recursion preserves totality and computability.

The process of application of the /.l- operator leads from a func-

tion g to a function f, where

(2. 4) f(xl,..., x) = /A«y C{CIPRETFE 0.

(/A/y = the least y. /uy g(xl,...,xn, y) = 0 is defined iff there is a y
s.t. for all z<y g(x.....,x, z) is defined and # 0 and if CCIPPP
.o xn,y) = 0; in this case y = y g(xl, cees X s y)=0. Application of the
/ll, operator preserves computability but in general not totality. Computabi-

lity would not generally be preserved if we would not postulate that
g(xl, cees X, z) be defined for z <y.

The/u«-operator may also be applied to a relation R. We define
/u/y Rxl.. Xy by /Ly g(xl, ...,xny) = 0, where g is the characteristic
function of R,

The functions which may be obtained starting with the initial fun-
ctions and using substitution and primitive recursion are called primitive

recursive functions, If we admit in addition the application of the /L—ope-

rator we get the /L{,-recursive functions, Every primitive recursive fun-

ction is total and computable. The /Lb—recursive functions coincide with
the computable (partial) functions. There are total /J-recursive functions

which are not primitive recursive,

2. Turing machines, A TM (Turing machine) M is given by (a)

fini
ERETL I (b) a finite (ordered) set of

and a finite (ordered) set of quadruples, (The set

a finite (ordered) alphabet a
states Qg = »» qP
of quadruples is often called the table of M.) A quadruple is of the form
qab g, where q,q' are states, a is a letter (of the alphabet), and b

either a letter or one of the symbols R ("right" or L ("left"). (We assu-

H. Hermes

me, that the set of letters, the set of states and the set [R , L_] are mutually
disjoint,) We require that there is at most one quadruple in the set of qua-
druples which begins with qa, where q 1is a fixed state and a is a fixed
letter.

A tape is a two-way infinite sequence of squares. (Sometimes also
one-way infinite tapes are considered.) An inscription I is a mapping of
the set of squares into the alphabet. We assume that in I almost every
square is blank (empty), i.e. mapped on the void letter ay- A (complete)
ﬂn_fiw_a_ti_o_n_ C is a triple C = (L, s,q), where I is an inscription, s is a
square and q a state, We write C = (I(C), s(C), q(C)) . s(C) is called the
scanned square of C, and a(C) = I(C) (s(C)) the letter on the scanned squa-
re of C. C is called terminal, if there is no quadruple in M which begins
with q(C), a(C) . Otherwise we associate with C in a unique way a con-
figuration C , called the successor of C: let be q(C) a(C) b q* the
quadruple of M which begins with q(C) a(C) . We want to define
Ccr=(I', s ,q'). We put q'=q. I'and s depend on b, We distinguish
two cases :

(1) If be is a letter, we puts s' =s and]I'=1with the fpossible)
exception that I'(s') = b,

(2) If b =R(L), s'is the right (left) neighbor of s and I' =1.

If we start with an arbitrary C, we obtain in a unique way a se-
quence C, C', C" = (C"', C™,..., which may be finite or infinite, "To
start with C" may be expressed as" to apply M on I(C) in s(C)", if
q(C) = - "To proceed from C to C' "may be expressed as printing, if
we have case (), and as going to right (left), if we have case (2). "M
halts, starting with C, at C*" means, that the sequence C, C!...

has a last terminal term which is C*

3. With each Turing machine M and each natural numer n we

n (We assume in the following

associate an n-ary partial function fM

H. Hermes

that the alphabet of M has at least the letiers a, (blank) and al.)

Let be XpseonX natural numbers and Cx x 2 configuration with
n " 1 Xy
q(C X) = - I(C X) an inscription where the arguments
e X ...
1 n 1 n
Xys...,X oare represented by sequences of (x1+1), .. .,(xn+l) consecu-
tive squares which bear the letter al and are separated from each other
M . .
by one blank square, and s(CX X) is the first square on the tape
RERE

which bears the letter a,. For any configuration C let be v (C)

(the value of C) the number squares which bear the letter a, in I(C) .

Now we introduce fn as follows: fn (x,,...,x) is defined iff there is
* M M M1 n x
a C s.t. M, starting with C X’ halts at C ; in this
. . CEEETEN
case fM(xl, e xn) =v(C). An n-ary function f is called Turing

computable if there is a Turingmachine s.t. = fM'

4. Relative computability. Mathematicians not only are interested

in the question whether a partial function f is computable, but also in
the guestion whether a partial function f is computable if we suppose
that some other partial function g is computable (where g may
be computable or not). This question has a positive answer iff there is
a procedure to get the values of f wunder the assumption that the values
of g are given. It is not assumed that the values of g are given
by any effective procedure., If f is computable under the assumption

that g is computable, we call f computable relative to g or

g-computable g-recursive) and write f <g. As an example we have

2
g < g for every function g

A precise definition for the relation f < g runs as follows :
f

We have f< g for exactly those functions which may be obtained

- 14 -
H. Hermes

starting with the initial functions (cf.no.1) and g , using substitution,
primitive recursion and the application of the /u.- operator,

It is obvious that < 1s reflexive and transitive . Hence the relation de-
fined by (f < g and g&f) divides the class of all (partial) functions in mu-

tually disjoint subclasses. These classes are called degrees (of unsolvabi-

lity). Let be f the class to which f belongs. It is possible to define

f £ g by fg g. Hence the set D of degrees is a partially ordered
set. D has a least element 0 which consists of all (/,(.—) recursive fun-
ctions. Not in every degree we leave a total function (Medvedev 1955,

cf, Rogers [1]) . Degrees which have total functions as elements are cal-
led total degrees. A total degree may be identified with the set of all to-
tal functions belonging to it. The set T of total degrees is not only
partially ordered but in addition a semi-upper-lattice: Let be f, g total

unary functions and h(x,y) = ({z(f(x), g(y)). Then h is the least upper

bound of f and g with respect to <

5. If g is a unary total function the relation fg g may be de-
fined using an extended concept of Turing machines. Here we admit alsc
quadruples q a b q' where b is a state (cf. no. 2) . If a configuration
C is not terminal (no.2) we associate with C as its successor a confi-
guration C'g depending on g. C'g is determined by the quadruple which
begins with q(C), a (C) (cf. no.2). Let be q a b q' this quaduple.
If b is not a state we define C'g = C' (no.2). If b =q" we define
C = (1(C), s(C), a¥) where q* = q' if g(G, (v(0)) = & ,,(v(C),, and
x* _

q"” = q" otherwise. Hence in order to get C'g one has in general to

ask an "oracle" (Turing) about the value of g for a certain argument.

With each Turing machine (of the extendet kind), each function

. . n
g and each natural number n we associate an n-ary function f‘M .
> 8

The definition runs like the definition of frl:/[in no. 2,3, but with

15 -

H. Hermes

C'g in place of C!

An n-ary (partial) function is called Turing computable relative to

g iff there is a Turing machine (off the extended kind) s.t. f=f§/[g

6. It is often convenient to identify a predicate (set, relation) with
its characteristic function (which is.a total function). Hence we may speak

of the degree of a relation and extend K to relations,

REFERENCES : See Lecture 1.

Egcture 3: Kleene's Normal Form Theorem; the Jump Operator,

1. With each total degree d it 1is possible to associate a
degree d' (the jump of d) which has the property that d< d' (butd'
is not an upper neighbor of d). To prepare the definition of d' we in-

troduce Kleene's normal form for g-recursive total functions.

2. In the following we assume that we have mutually disjoint infi-

a a

nite seauences a and q., q,, 9,,..., and that the alphabets
o 91 9 P

(C S IO
and states of any Turing machine are initial segments of these sequences

(which is not a serious restriction). A Turing machine M (of the extended

- 16 -

H. Hermes

kind, cf. Lecture, no. 5) may be described by its Godel number G(M).
We assume in addition that also finite sequences CO, Cl’ s Cm of con-
figurations are described by Godel numbers G(CO, cees Cm). The follo-
wing constructions depend on the (fixed) Godelization G.

We want to introduce a unary total function U and for each n an
(n+2)-place predicate Tg (which depends on a total tunction g) in order to
describe the function ffﬁ/[,g (cf. also Lecture 2, nos. 2, 3 ,5). Let be

the value v(Cm) if there is a sequence of configurations

(3.1) U(g) = CO”"’ Cm s.t. g = G(CO,...,Cm),
0 otherwise,
(3.2) ’I‘r;le...xny iff there are a Turing machine M and configurations
M
= = PN = s
CO""’Cm s.t. z=GM), y G(CO, ,Cm), CO Cx1~"xn

= vt i . .
Cj+1 (Cj)g(depending on M) and Crn is terminal,

n

Now we repeat the definition of fM

g(Lecture 2, no.5) by writing

>

(3.3) f L) = U YTLGMX, ... X)

M, g™*1°

This is Kleene's Normal Form Theorem, It shows that each n-ary g-recur-

1 .xny) with suitable 2z,
It is easy (but somewhat tedious) to show that U is a recursive function

sive function may be represented by U(/.A.yngx

and Tg a g-recursive predicate (i.e, its characteristic function is
g-recursive (g-computable)). From this we infer that U(ju/yTg le. . .xny)
is an n-ary g-recursive (partial) function for every z. Hence, varying
the number z =0,1,2,... we get every n-place g-recursive function.

In addition it can be shown that in order to obtain U and the cha-

racteristic function of Tg starting with the initial functions and the fun-

- 17 -

H. Hermes

ctions g, (cfr. Lecture 2, no. 4) it is not necessary to apply the /,L-ope-
rator (U and Tz are"g-primitive recursive") ., Hence (3.3) shows that
we get every g-brecursive function by applying the /4,—operator at most
once,

For later application it is convenient to notice that
. . M . 1
(3.4) M, starting with C_°, halts iff VyT gG(M)xy

Finally we remark that for the usual choice of 621 and of

G(C,..., C) we have
o m
Gy (V(I(C)) <G(Cy,...,C) (i=0,..., m-1).

1
This shows that in order to check whether ngxy holds or not, the oracle

for g 1is asked only for arguments which are less than y
3. For each total unary function g we define

1
3.5 ' = characteristic function of the unary predicate VyT xxy.
g y g Y

We want to show that

(3.6) ggg'

3.7) g' (hence with (3.6) g <g'),
(EF¢ (3.6) g <g')
(3.8) f & g —1f g

Using (3. 6), (3.7), (3.8) we may extend the operator '(jump) to elements

of T(total degrees) by defining (f)' = (f'). It follows that d<d'.

4. We obtain (3.7) by proving (Church)

(3.9) g'{e.

- 18 -

H. Hermes

Otherwise let be g' < g. We introduce a total function h by

(3. 10) h(x) = { U(}J/yTgfxxy)+1, if this is defined for x,
0 otherwise,
Under our assumption g'g g we find h is g-computable . Henee according

1
to no. 2 there is a number s.t. h(x) = U(’/MyTg zxy) for every x. We
get as a special case h(z) = U(/u yT;zzy), which contradicts (3.10).

5. In order to obtain (3.6) and (3.8) we prove the following Theorem
Kleene)., Let be a unary and total function, R a 2-place relation and
g Y

R < g. Then there is a computable total unary function r s.t.

(3.11) Vy Rxy iff VyT, £(0 r(x) y
Proof: For each number x it is possible to construct effectively an ex-
M
tended TM M(x) s.t. starting with C (x) (where t is an arbitrary
- oM -) -
natural number) we get a sequence C0 = Ct s C1 = (Co)g, C2
=(C l)é’ ... of configurations s.t. the following statements hold : There
M
is a k s.t. I(C) is void. For a number k_ >k we have C C (x')
k 0 k x, 0
Using the assumption R . g, M now "checks" whether Rx0 or not. If
not, there will be a kl >lr(0 s.t. Ck = C)IZ/[(IX) . Now M "checks"

. 1
whether Rx1 or not, etc. If there exists no y s.t. Rxy, M(x) does not

halt, But if there a y s.t. Rxy, M(x) will halt. Hence we have

M(x)

(3.12) M(x) , starting with Ct

, halts iff Yy Rxy.

Now let be r(x) = G(M(x)). r is a computable total function. From (3. 4)

we infer:

M
(3.13) M(x), starting with C, ™) halts itf vy Tlg G(M(x))) ty .

- 19 -

H. Hermes

Comparing (3.12) and (3.13) we get (introducing r(x))

1
(3.14) Vy 'Rxy . iff \/yTgr(x)ty s

which gives (3.11) for t = r(x)

6. We now apply Kleene's Theorem in order to prove (3.6) and
(3.8).
Proof of (3.6): We introduce R by postulating

Rxy iff g(@, ()= S, ,x)Ay=y.

It is obvious that R g g . Hence according to Kleene we have a computa-

ble total function r s.t.
. 1
(3.15) YyRxy iff \/yTg r(x) r(x) y

The left side is equivalent to g(ezl(x)) = G’zz(x) . Hence from (3.15) we

obtain g <g'(r), and trivially g'(r) Lg'.

1 .
Proof of (3.8) : Let be fg g. We define Rxy by Tf xxy . R g, since

1< f£ g. Using Kleene's theorem we have

Tf\

1 1
“Vy T, xxy iff \/yTg r(x) r(x) y ,

which shows that f' =g'(r) < g'.

7. The upper-semi-lattice T (lecture 2, no. 4) with the additional
jump-operator is a very complrex structure which has been intensively
studied. I want to mention only two results:

(1) Every countable partially ordered set is imbeddable in T,

- 90 -

H. Hermes
(2) The complete degrees (e.g. the degrees of the form d') coinci-

de with the degrees > 0'.

8. Of special interest are the degrees of enumerable sets. These de-

grees are called enumerable degrees. About the enumerable degrees we

have the following elementary facts:

(2) 0 is an enumerable degree, since every decidable set belongs
to 0 and every decidable set is enumerable,

(b) Going back to the intruitive notion of enumerability it is = easy
to see that every enumerable set may be expressed in the form YV/y Rxy,
where R is decidable. Conversely each set of this form with decidable
R is enumerable. If is a computable total function (e.g. f = Sl) then
T;xxy is decidable. Hence 'VyT;xxy is enumerable, This shows that
0' is an enumerable degree (cf. (3.5)).

(c) As we have seen in (b), each enumerable set S may be

expressed in the form Vy Rxy with decidable R. Using Kleene's Theorem

(3.11) for a computable total unary function g, we obtain the result that

degree of S =_g.'(r) <g' =0"
We have shown that 0 and 0' are enumerable degrees and that for
every enumerable degree we have 0 < d <0'. Post (1944) has asked whether
there are enumerable degrees other then 0,0'. This question has been an-

swered (positively) not before 1966/7. Cf. Lecture 4 and 5.

REFERENCES: See Lecture 1, - Kleene and Post [1] , Post [IJ

_ 91 -

H. Hermes

Lecture 4;_Theorem of Friedberg-Mulnik, Part 1_

1. The Friedberg-Mucnik Theorem answers in the affirmative the
question whether there are enumerable degrees besides 0 and 0' (cf.
Lecture 3, no.8) . We follow the treatment of Sacks who tries to separa-
te a combinatorial part of the proof (which he calls "prority method")
from the rest which uses recursive concepts. This lecture is devoted to
the combinatorial part. The proof is finished in the next lecture . For

other proofs cf. the references.

2. The individuals considered here are natural numbers, Let be
E, F, F' unary and H,D binary predicates, and g a total unary fun-
ction (whose arguments and values are natural numbers). We introduce

the following abbreviations

(4.1) Lrs for 0<r<s A -F'r AFr N —mHrs - 1,
(4.2) Ps for Yr(gr)<g(s) A Lrs A Drs) ,

(4.3) Qs for Yr(g(r) = g(s) A Lrs) ,

(4.4) ¢psk for 0<s A =F' s AFs A g(s) =k,
(4.5) "f/ sk for Vr(r<s A (Prk/\ —Hrs -1 A Hrs),

(4. 6) P for [s: @ re] |
(4 1) Yy for [5: Wak] .

The derivations in this legture are based on the following
Axioms:

Al: —F' s A Fs¢>—Es
A2: —Hrs - 1 A Hrs —» Drs A—Es
A3: Hss —>Es

- %% _

H. Hermes

A4: Ps -—> Es

A5: Qs —> Es

A6: —Fs — Ps V¥V Qs \v Hss-1
AT: Hrs - 1 — Hrs

We first prove several lemmata. The most important are Lemma 4 and
Lemma 5 which relate the predicates CP and ZP These lemmata are
used to derive Lemmata 8 and 9 which show that for each k the
sets (;b (k) and 7—)—/(1() are finite. This immediately leads to Lemma 10.
Axioms 6 and 7, not used hitherto (and no other axiom) will be used

in order to derive Lemma 11. In the next lecture we apply only Lemmata

10 and 11.

3. Lemmata 1to 5.

Lemma 1. d)sk——» — Es.
Proof: Axiom 1.
Lemma 2: Y/sk—> —Es,
Proof: Axiom 2.
Lemma 3. (P sk—> —Hss.
Proof: Lemma 1, Axiom 3.
Lemma 4: r<s A ¢rk A Cbsk —>\Vu(r<u<s A 'Lluuk) .
Proof: From [bsk we get —Qs(Lemma 1, Axiom 5). Using ¢-rk
and ¢sk we have g(r) = g(s). Hence -,Qs gives —Lrs. Since we

have 0<r <s, —mF'r and Fr (from q)rk), we get Hrs-1l. From (brk
we obtain — Hrr (Lemma 3). Comparing —Hrr and Hrs-1-we finad

that there is a number u s.t. r<u<s, —Hru-1, Hru, This together
with Cprk gives %Uuk .

Lemma 5: W sk Vi(i<k Adsi) .

- 23 _

H. Hermes

Proof: Using the definition of Ysk we have a number r s.t. r<s,
q‘)rk, — Hrs-1, Hrs. Let be i = g(s). Remember that k = g(r) (from ¢rk).

If we assume kg we get a contradiction: Then we have g(r)=g(s) and

Lrs (using d)rk and Hrs-1). Hence we get Qs and, with Axiom 5, Es. But
we also have-Es by Lemma 2.

If we assume k<i we get a contradiction: Then we have gr) < g(s),

Lrs (as above) and Drs (using Axiom 2). Hence we get Ps and (with Axiom 4)
Es. But have —Es by Lemma 2,

Hence we have i <k. From &4Jsk we get Es (Lemma 2), then

—F's and Fs (Axiom 1). Since 0 <s and g(s) =i we have (Psi.— -

4, Lemmata 6 to 9.

Lemma 6.]:/'/(k) C 'L_</k¢(i)
E— i

Proof: Lemma 5.
Lemma 7. cardd) (k) < card ‘W(k)+1 .

Proof. According to Lemma 4 between two numbers r,s with

r <s, @rk and ¢sk, there is a number u s,t"’zUuk_ Hence if d)(k)
is infinite then also i)U(k) is infinite, If C})(k) is finite let be

d)(k)={s,...,s } with s <s_ <...< s . Then we have numbers
o n [1 n ,

<u.<s < < < . kK,..., k. Hen-
ul,...,ur‘1 s.t. Sy <Yy s1 u, <s2 .,,<un Sh s.t quul , Lf’un n
ce card (k) + 1 > nt+l = card (p(k).
Lemma . card 7‘}‘/(k) < 2k

Proof by induction: (a) (0)is void (cf. Lemma 5) . Hence card

Wiy <2°. (b) Let Lemma 8 be true for all i<k. Then we have

card LP(k)E 2 card(P({)(Lemma 6)
! iCk
< 35 (card Wiy +1) (Lemma 7)
iCk

IA

i
Z 2 (induction hypothesis)
iCk

_ 54 -

< 2k) H. Hermes
Lemma 9. cardCP(k) < 2K
Proof: Lemmata 7, 8.
Lemma 10: Ak YVuArAi@u<rAi < k*ﬂ(b ri/\.—HJri).

Proof: The gist of Lemmata 8,9 is the fact that ¢(k) and yj(k) are

finite for each k. From this we infer immediately Lemma 10.

Lemma 11: Let be
() g(s) = k
(2) —F's, —Hss-1,
(3) u < s,
(4) Ar Adu < rAi S k=>m@ri A — Fri),
(5) /\r(r < u-—>—Drs) .

Then we have
\/r(¢rk/\./1m — Hrm)

Proof: From (4) we get for r =s and i=k that ——.(Psk. Looking
at the definition (4.4) we find that—Fs, Hence Ps VQs VvV Hss-1 (by
Axiom 6).

Hss-1 is excluded by (2).

Ps can be excluded as follows: Assume Ps. Then there is a num-
ber r, s.t. 0<r<s, F'r, Fr, —Hrs-1, g(r)< g(s), Drs. Let be
i=g(r). Then we have ¢ri. Now i = g(r)< g(s) = k. Using (4) we get
ru, Hence —Drs by (5), contradicting Drs.

Therefore we have Qs. By definition of Q we have a number r,
s.t. 0<r<s, —F'r, Fr, —Hrs-1, g(r)=g(s)=k . For this r we
have ¢ rk. We want to show that W|Hrm for every m.

We have —Hrs - 1. Hence by Axiom 7 we have —Hrm for m<s-1,
If now Hrm for some m, we have a number m >s>r .S.t —Hrm-1
and Hrm. Therefore we would have q‘)mk (by definition (4.5)). Now (4) shows

that ~wHrm which contradicts Hrm,

References: Friedberg rﬂ Mucnik rl] , Lachlan [1] , Sacks Lf{ , Shoenfield]

- 925 -

H. Hermes

1. We want to show that there are enumerable degrees do’dl’ s.t.
do$ d1 and dlff:do. Since for every enumerable degree d we have
0 £ d 0" (cf. Lecture 3, no.8) neither dO nor dl can be 0 or 0'.

In this lecture every set (relation, function) has natural numbers as

elements (arguments, values)., Small letters refer to natural numbers. For

1
each s we will define sets AF), AS st. the binary relations x&-A(s) and
s

xéAls are recursive (i,e. decidable), Now we introduce the sets AO, A1
by

o 1 1
(5.1) A°=yaA° | A= UA .

s S s S

From the equivalence x er iff steA(S) we infer that A® is enumera-
ble (cf. Lecture 3, no.8) . The same holds for Al.
1
The definitions of AZ and As will be interrelated. We later on

define sets TS s.t. x eTS is a binary recursive relation and introduce

o 1
A
As s by

1 . .
(5.2) neA’ iff 2ne T ne€A” iff 2n+leT
s s n s-1

-1’

S

2. The sets TS will be defined together with sets Fs, H and

a function g(s) by simultaneous recursion, We introduce the following abbre-

viations:
s s
(5.3) F's for F C T s F forF CcT |,
s-1 s s
(5. 4) Hrs for H' N T_# 0, Drsfor B NF° £ o,
(5.5) Es for T =T

_ 08 -

H. Hermes
The definitions of F° , HS, Ts and g(s) are given by (5.6) for the case
s = 0. For the case s>0 we distinguish Case 1 where we have the defi-
nitions (5.9), (5.10), (5.11) and Case 2 where we hawve the definition

(5.12) for FS, HS, and g(s) . In both cases Ts is given by (5.13) and

(5.14) .
o o .
(5.6) F =H = T0 = 0 (void set), g(0) =0.
. s s s-1
In order to define F , H and g(s) for s> we suppose that F ,
- 1
H® 1 and g(s-1) are defined. Hence also A: and A are given by
1
(5.2). Let be- fZ s f; the characteristic functions of AZ, AS. Let be
(56.7) &(s) =0 if s is even, g(s)=1 if s is odd,
(5.8) e(s) = the number of prime factors 3 occuring in the pri-

me number representation of s.

Consider the following condition (where p is the kth prime number)

s) y) and U(y) = 1.

(%) Vmyy (m<sAy < s ATEE)) P
S

We have Case 1 if (%) is satisfied, otherwise Case 2. In Case 1 let

be r(s) the greatest m for which Vy (...) . Then we define :

(5.9) F

faollo) +1 - e},

(5.10) z : Vnn< sAn ¢A§(s)/\z = 2n+€(s))

jas}
I

(5.11) g(s)

2e(s) + E&(s) + 1.

