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Lecture 1 . Fundamental Ideas Concerning Wave Equations

1. General Ideas

The physical concept of a wave is a very general one. It includes the

cases of a clearly identifiable disturbance, that may either be localised

or non-localised, and which propagates in space with increasing time, a time­

dependent disturbance throughout space that mayor may not be repetitive in

nature and which frequently has no persistent geometrical feature that can

be said to propagate, and even periodic behaviour in space that is independent

of the time. The most important single feature that characterises a wave

when time is involved, and which separates wave-like behaviour from the mere

dependence of a solution on time, is that some attribute of it can be shown

to propagate in space at a finite speed .

In time dependent situat~ons, the partial differential equations most

closely associated with wave propagation are of hyperbolic type, and they

may be either linear or nonlinear. However, when parabolic equations are

considered whicp have nonlinear terms , then they also can often be regarded

as describing wave propagation in the above-mentioned general sense. Their

role in the study of nonlinear wave propagation is becoming increasingly

important , and knowledge of the properties of their solutions , both qualitative

and quantitative, is of considerable value when applications to physical

problems are to be made. These equations frequently arise as a result of the

determination of the asymptotic behaviour of a complicated system.

Nonlinearity in waves manifests itself in a variety of ways, and in

the case of waves governed by hyperbolic equations, perhaps the most striking

is the evolution of discontinuous solutions from arbitrarily well behaved

initial data . In the case of parabolic equations the effect of nonlinearity

is tempered by the effects of dissipation and dispersion that might also be

present. Roughly speaking, when the dispersion effect is weak, long wave

behaviour is possible, whereas when it is strong a highly oscillatory

behaviour occurs, though the envelope of the oscillations then exhibits some

of the characteristics of long waves.
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Waves governed by a linear wave equation arise in many familiar

physical situations, like electromagnetic theory, vibrations in linear

elastic solids, acoustics and in irrotational inviscid l i qui ds . However,

these linear equations often arise as a consequence of an approximation

involving small amplitude waves, so that when this assumption is violated

the equations governing the motion become nonlinear.

Not only does this convert the problem to one involving nonlinear

partial differential equations, but it also usually leads to the study of

a system of first order equations, rather than to a nonlinear form of the

familiar second order wave equation. This happens because the wave equation

usually arises as the result of the elimination of certain dependent

variables from f irst order equations (like! or ~ in electromagnetic theory),

and this is often impossible when nonlinearity arises . Our concern hereafter

will thus be mainly with quasilinear first order systems of equations - that

is to say with systems that are linear in their first order derivatives, and

for the most part we will confine attention to one space dimension and time.

2. The Linear Wave Equation

Because of the importance of the linear wave equation

(1)

let us begin by reviewing some of the basic ideas that are involved, though

in the more general context of the variable coefficient equation

3
r

i,j-O
f (2)

012 3
with a i j, bi, c , f functions of the four dimensional vector ~ (x , x ,x x).

Not all linear second-order equations of this form describe wave motion , and

on account of this it is necessary to produce a method of classification which

readily allows the identification of wave type equations from amongst the

other types that are possible (i.e. elliptic and parabolic).

The form of classification to be adopted utilizes the coefficients of

the highest-order n?-rlva. !:iv ee and has an algebr a i c bas i s but, as will be s een
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in a subsequent section, this classification in fact effectively distinguishes

between equations of wave type and those of other types. Let us start by

attempting some simplification of the form of equation (2) by changing the

independent variables through the linear transformation

i 0,1,2,3 (3)

where the cl(ij are constants.

A transformation of this form gives an affine mapping of the

(xO, xl, x2, x3)-space which is one-one provided detl~jl; 0. Employing

the chain rule for differentiation we find that equation (2) may be re-written

3
}:.

i,j,k,R.=O ° . (4)

Hence the coefficients a i j of the derivatives u i j' which are functions of
x x

position, transform to the new coefficients

of the derivatives u k t' which are also functions of position. If, now,
; ;

we confine attention to the set of coefficients a i j appropriate to some

012 3specific point ~ "" ~ in (x , x , x , x )-space, we see that this is exactly

the transformation rule which would apply to the coefficients a i j of the

quadratic form

3
L aijTliTlj ,

i,j=O

when the Tli are transformed to 8k by the variable change

3
Tli r aki8k•k-O

(5)

Now it is a standard algebraic result that by a suitable transformation

a quadratic form with constant coefficients may always be reduced to a sum

of squares, though not all of the squared terms need be of the same sign.

Furthermore, Sylvester's law of inertia asserts that however this reduction

is accomplished , the number of positive terms m and the number of negative
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terms n will always be the same. To apply these results to the differential

equation (2) itself with the variable coefficients a i j, let us again confine

o 1 2 3
attention to a fixed point ~ • !o in (x , x , x , x )-space and attribute to

the a i j the specific values a i j - aij(!o).

This then implies that some choice of the numbers a i j • ai j exists for

which

where m + n < 4. The number pair (m,n) is called the Signature of the

quadratic form (5) and, being an algebraic invariant, is used to classify

the quadratic form. We shall use it to classify the variable coefficient

partial differential equation (2) at each point ~ = !o'

The effect on equation (2) of using these numbers ai j in the transformation

(3) is to yield at ~ - !o a differential equation of the form

m-l m+n-l 3
I u - I u i i + I biu i + f 0 (6)

i=O ~i~i i"'1ll ~ ~ i:oO t

Equation (6) or, equivalently, (2) is called hyPerbolic at ~ = !o in the

o
~ -direction when the signature is (1,3), elliptic when the signature is

(4,0) and parabolic when m + n < 4. If an equation is hyperbolic in the ~O_

direction at each point of a region n, then it is said to be hyperbolic in

othe ~ -direction throughout n.

Obviously, if an equation has constant coefficients, then one suitable

transformation (3) will reduce it to the form of equation (6) throughout all

space. For example, aside from the trivial transformation to remove the

constant factor I/c2, the wave equation (1) is already seen to have the

signature (1,3). Thus if a transformation is made at one point of space to

2convert the factor llc to unity, then it does so for all points in the space.

The usual effect of variable coefficients and first-order terms in

hyperbolic equations of the form (2) is to introduce distortion as the wave

profile propagates. This produces various complications, not die least of

which is the fact that the wave velocity becomes ambiguous and requires
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careful definition. Only when there is a clearly identifiable feature of

the wave which is preserved throughout propagation is it possible to define

the propagation speed of this feature unambiguously. Such is the case with

a wave front separating, say, a disturbed and an undisturbed region and

across which a derivative of the solution is discontinuous.

3. The Cauchy Problem - Characteristic Surfaces

Fundamental , to the study of hyperbolic equations is the Cauchy problem,

and the associated notion of a characteristic surface. In brief, when

working with four independent variables the Cauchy problem amounts to the

~etermination of a unique solution to an initial value problem in which a

hypersurface F is given, and on it the function u is specified together

with the derivative of u along some vector directed out of F. Such a

directional derivative is call~d an exterior derivative of u with respect

to F, in order to distinguish it from a directional derivative in F which

is known as an interior derivative. In the Cauchy problem it must be

emphasized that the function u and its exterior derivative over the initial

hypersurface F are independent, and can be specified arbitrarily.

A hypersurface F for which the Cauchy problem is not meaningful because

u and its exterior derivative cannot be specified independently is called a

characteristic hypersurface. Let us now see how characteristic hypersurfaces

may be determined.

012 3It is convenient to utilize curvi-linear coordinates ~ , ~ , ~ , ~ and

to let the hypersurface F on which the initial data is to be specified have

othe equation ~ = O. In terms of the new variables, a derivative with respect

to ~O is a directional derivative normal to F so that it is an exterior

123derivative, whilst derivatives with respect to ~ , ~ , ~ are interior

derivatives.

We now utilize this by rewriting equation (2) in a form in which the

derivative u is separated from the other second-order derivatives
~o~O
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3
+ L

i,kwO
f • (7)

,
Here L signifies that the terms corresponding to k = i = 0 are omitted from

the summation.

Now if we specify u and u 0 independently on F, as is required in the
E;

Cauchy problem, the substitution of their functional forms into equation

(7) enables the determination of u 0 0' provided only that the coefficient
E; E;

of this derivative does not vanish. Thereafter, the solution may be obtained

in the form of a Taylor series by determining the coefficients of the series

by successive differentiation of the initial data and of equation (7) itself.

This is, of course, the idea underlying the classical Cauchy-Kowalewski

theorem. It is, however, very restrictive as an existence theorem since..
it demands that all functions involved are C •

In the event that the coefficient

(8)

of u 0 0 vanishes, neither this nor higher-order derivatives of u with
E; E; 0

respect to E; can be found . Furthermore, the derivative u 0 0 may then be
E; E;

specified arbitrarily on F, and even differently on opposite sides of F.

This is not remarkable, because when the coefficient of u 0 0 vanishes,
E; E;

u and u 0 cannot be specified independently over F. This follows because
E;

they must satisfy the equation which results when the first term is deleted

from equation (7), and so we then have insufficient initial data.

As already mentioned, the hypersurface F with the equation E;0 = 0 for

which the coefficient (8) vanishes is called a characteristic hypersurface of

the differential equation (2). To examine such hypersurfaces further, we

o ibegin by setting Pi = 3E; lax and writing

3
H = r ai,Pi Pj'

i,j=O J
(9)
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Then the quadratic form H is the coefficient of the derivative u 0 0 in
~ ~

equation (7), and the characteristic hypersurface F will be given by the

condition H = O.

To interpret the condition H = 0, we first recall that if ~ is a

differentiable scalar function, then grad~ is a vector normal to the surface

~ = const. Consequently, by analogy , Pi = a~Olaxi is the ith component of the

four-dimensional gradient of ~O and so is the ith component of a four-dimensional

vector ~ normal to the hypersurface F. Hence the equation H • 0 is a

condition on the orientation of the normal vector ~ to F, and as the a i j are

usually functions of position, it follows that this condition will differ from

point to point.

The quadratic form (9) is, of course, just the same quadratic form we

encountered in (5), so that its signature will depend on the type of the

equation (7) or, equivalently, (2). If the equation is hyperbolic at

~ = !o the signature will be (1,3), and it follows that at the point the

condition H = 0 determining the characteristic hypersurface can be reduced to

(10)

It is obvious that no real characteristic hypersurface exists for

elliptic equations, since their signature is (4,0) and the components of the

vector ~ need to be complex if they are to satisfy the condition

222 2
H • Po + PI + P2 + P3 0 •

To proceed with the hyperbolic case we now simplify matters by setting

xO • t and writing

~O t - ~(xl, 2 x3) (11)x ,

so that Po • 1 and Pi = -~ i for i = 1 ,2,3. Then the quadratic form (10)
x

becomes

~2 + ~2 + ~2 1 (12)
1 2 x3x x
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which is a differential equation for the function ~ locally at ~ = ~.

This is, of course, the familiar Eikonal equation from mathematical physics .

At any time t = to a real three-dimensional surface S is defined by

1 2 3
~(x , x , x )

and this is called a characteristic surface .

If equation (7) is a constant coefficient equation it can be reduced

(13)

to the form of equation (6) with m = 1, n = 3 throughout all space, so that

equation (12) then describes the characteristic surface ~ = const for all

points in space .

In summary, we have established that real characteristic surfaces oc~ur

in connection with hyperbolic equations, and that across such surfaces a

discontinuity may occur in the second normal derivative of the solution. This

discontinuity in a derivative of a solution is usually identifiable with

an interesting physical attribute of the solution, since it represents a

wavefront bounding two regions.

The discontinuity surface, or wavefront, advances with time, as is

shown by the following simple argument.

Taking the total differential of ~o = 0 and using equation (11) we find

123
dt - dx • 1 - dx • 2 - dx • 3 0

x x x

or , equivalently

dt = .d£ . grad. ,

where d£ is the vector differential with components (dx
l,

dx
2

, dx
3

) .

Hence

1
Igrad"

where

dr
Y.. = dt

v.n

grad.
Igrad' I

(14)

The vector n is the unit normal to the surface • s const, and as d£ represents

the displacement of a position vector with time, y.. = d~/dt is the velocity of
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displacement of a specific point on the surface as the characteristic

surface moves from its position at time t to its position at t + dt . The

scalar v.n is the normal velocity of propagation of the characteristic

surface or wavefront and, in general, is a function of position.

By re-writing equation (7) and differencing it across the characteristic

surface , we shall see that there may also be a discontinuity in the first

normal derivative of the solution and this, like the discontinuity in the

second-order derivative, is propagated with the characteristic surface.

The equation governing the development of the discontinuities in first- and

second-order derivatives is an ordinary differential equation defined along

a curve in space and is called the transport equation.

4. Domain of Dependence - Energy I~tegral

The dependence of a wave solution on initial data is most easily

illustrated in terms of the one-dimensional wave equation

with the initial conditions

(15)

u(x,O) hex) and auat (x,O) k(x) • (16)

The explicit d'Alembert solution

u(x,t) h(x-ct)+h(x+ct)
2 f

x+ct
+ J:.... k(s) ds

2c
x-ct

(17)

shows how the solution at (xo,tO) depends only on data in the interval

xo - cto ~ x ~ xo + cto

This is called the domain of dependence of the solution at (xo,t
O)'

This

same idea generalises to quasilinear hyperbolic systems and we shall employ

it later.

In conclusion, to illustrate the important notion of an energy integral

that arises when working with equations derived from the conservation of

physical quantities, let us prove the uniqueness of the solution to the
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?Co

Domain of dependence

Cauchy problem for slightly generalised two dimensional wave equation

au
q(x,y)u - rat

u
l

(x,y) ,

(18)

(19)

and where we shall assume P, k, r to be positive constants and q(x,y) > O.

It will be convenient to consider that (18) governs the motion of a membrane

with density P, tension k per unit length, distributed springing under the

membrane with spring constant q(x,y) per unit area and fyictional coefficient

r.

Then the potential energy within a fixed region R with boundary B of

the (x,y)-plane comprises the energy stored in the springing

2qu dxdy

and the energy stored in the membrane

- .! II Uk[a
2u

+ a
2
u) dxdy

2 R ax2 al
+.! I uk au ds

2 1
B

ax

with n the outward dfuwn unit normal to Band ds a length element of B. The

first integral in ~(t) is the negative of the work done by the tension against

the interior of R and the second integral the negative of the work done against

the boundary.

Green's theorem shows that

so that the total potential energy
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(20)

The kinetic energy is

(21)

so the total energy is

or

(22)

It then follows after use of Green's theorem that

f au au• - k - ds -
B at an (23)

which is the outward flux of energy across the boundary and the loss due to

7
0

x
Now let R vary in such a way that at t = 0 it is Ro and at t = t l it is

the smaller domain ~. The surface between RO and R
I,

we write in the form

t = T(x,y).

friction.

Integration of the identity

o • i,'t H:~J' + k[f:i)' + f:;J'] + q.')
- kfa: f~~ ;~) +. a~: (;~ ;;)) + r (;~)2
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followed by use of the divergence theorem and some manipulation finally

gives the result

If t [k [;: + ;; ~~r
(x,y) in R
t=T(x,y)

+ k [;~ + ~~ ~~) 2 + P(l c
2[ [~;r + [;~r))[~~r + qU

2J dx dy, (24)

2
where c = kip and V is the volume of the region concerned.

Now impose on R(t) the condition

<
1
2

c
(25)

Then all terms on the right-hand side of (24) are non-negative, so if

u = ut = 0 at t = 0 in RO the right-hand side of (24) must vanish, since

with zero initial conditions the left-hand side vanishes. In particular this

means that ut must vanish identically on the top and sides of V. However,

the top Rl corresponds to any t l so that ut =0 in V. Since u = 0 in R
O

it

follows that u =0 in V.

This proves uniqueness, for if two different solutions v and w exist

corresponding to the same Cauchy data (19), u = v-w will satisfy the initial

data u = ut = 0 at t O. We have seen this implies u = 0 so that v = w, and

the solution is unique at all points that cannot be reached by a disturbance

starting in RO and travelling with a speed.:: c. The region RO now plays the

part of the domain of dependence, and the volume V becomes the domain of

determinacy.

The limiting case

1
= 2"

c

may be interpreted in a useful physical manner if we let n be the normal to
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the ruled surface t = T(x,y). We have

dn
1 [r~~r [:~J'rdt = TVTf = +

so that

d~

dt - c ,

showing that c is tilt: speed of contraction of the region R. The volume V

in which the solution is determined by the Cauchy data on RO is thus an

inverted cone with base RO'

5. General Effect of Nonlinearity

It is now necessary to make clear that the effect of nonlinearity in a

wave equation involves more than the loss of superposibility, for it can also

change the entire nature of the solution. This is best shown by a simple

non-physical example.

Consider the single first order partial differential equation

au + feu) au = 0
at ax

for the scalar u(x,t) that is subject to the initial condition

(26)

u(x,O) g tx) • (27)

Now the total differential du is given by

du au dt + au dx
at ax

so that if x and t are constrained to lie on a curve C, then at any point P on

C we have

au = au + rdX) ~
at at [dt ax (28)

where now dx/dt is the gradien~ of curve C at point P.

Comparison of (26) and (27) now shows that we may interpret (26) as the

ordinary differential equation

du
dt o (29)

along any member of th e fami ly of cur ve s C whi.:h ar e the solution curves of



24

dx
dt

feu) • (30)

These curves C are called the characteristic curves of equation (26). The

solution of the partial differential equation (26) has thus been reduced to

the solution of the pair of simultaneous ordinary differential equations (29)

and (30).

Equation (29) shows that u • const along each of the characteristic curves

C. The constant value actually associated with any characteristic curve being

equal to the value of u determined by the initial data (27) at the point at

which the characteristic curve intersects the initial line t o. Setting

u = const in (30) then shows that the characteristic curves C of (26) form a

family of straight lines. So, if we consider the characteristic through the

point (~,O) on the initial line, we find after integrating (30) and using

(27) that the family of characteristic curves C have the equation

x = ~ + tf(g(~»

where ~ now plays the role of a parameter.

Expressed slightly differently, we have shown that in terms of the

(31)

parameter ~,u • g(~) at every point of the line (3l)in the (x,t) plane. In

physical problems t usually denotes time, so that it is then necessary to

confine attention to the upper half plane in which t ~ o.

The solution to (26) and (27) may be found in implicit form if ~ is

eliminated between u • g(~), which is true along a characteristic, and the

equation (31) of the characteristic itself. We find the general result

u = g(x - tf(u» • (32)

Result (31) shows that if the functions f and g are such that two character-

is tics intersect for t > 0, then since each one will have associated with it

a different constant value of u, it must follow that at such a point the

solution will not be unique. This can obviously happen however smooth the

two functions may be, since intersection of two characteristics depends merely

on the value of f(g(~» that is associated with each of the straight line

characteristics. This is to say on the two points (~1'0) and (~2'0) of the
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initial line through which they pass. We conclude from this that such

behaviour of solutions is not attributable to any irregularity in the

coefficient f(u), or in the initial data u(x,O) E g(x).

Differentiating (32) partially with respect to x gives

g'(x-tf(u»
l+tg'(x-tf(u»f'(u) (33)

showing au/ax becomes infinite whenever 1 + tg'(x-tf(u»f'(u) E o. This is

what is often called the gradient catastrophe . In order to extend the

solution beyond this point we will need to introduce the concept of a

discontinuous solution called a shock. This will be done later.
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Lecture 2. Quasilinear Hyperbolic Systems, Characteristics and Riemann

Invariants.

1. Characteristics

The notion of a characteristic curve needs to be introduced in the

context of the quasilinear system

+ B - 0 (1)

in which U and Bare n element column vectors with elements u
l'

uz, ... ,

The system (1) will be quasilinear if, in general, the

, bn, respectively, and A is an n x n matrix with

When B .; 0 thenonlinearly on ul' u2' ••• , un'

a ..•
1.J

a.. of A depend
1.J

elements

un and bl, bZ'

elements

elements b i of B may, or may not, depend linearly on ul' u2' ••• , un' It

will be assumed throughout this section that the elements b
i

and ai j are

continuous functions of their arguments.

Although x, t are the natural variables to use when deriving systems

of equations describing motion in space and time, they are not

necessarily the most appropriate ones from the mathematical point of

view. So, as we are interested in the way a solution evolves with time,

let us leave the time variable unchanged in system (1), but replace x by

some arbitrary curvilinear coordinate ~ and then try to choose ~ in a

manner which is convenient for our mathematical arguments. Accordingly,

our starting point will be to change from (x, t) to the arbitrary semi-

curvilinear coordinates

~ ~(x, t) , t' t . (Z)

If the Jacobian of the transformation (2) is non-vanishing we may

thus transform (1) by the rule

L ~ L + ~ a ~ L + a
dt - at aE; at at' - at a~ at'

L ~ L + l!.~ a ~ L
ax - ax a~ ax at' - ax a~
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where, of course, a~/at and a~/ax are scalar quantities. This leads

directly to the transformed equation

the terms of which may be grouped to yield

o

au
atT + + 2.§.A)

ax
auat + B o , (3)

where I is the n , x n unit matrix.

Equation (3) may now be considered to be an algebraic relationship

connecting the matrix vector derivatives au/at' and au/a~. It is then

at once apparent that this equation may only be used to determine

au/a~ if the inverse of the coefficient matrix of au/a~ exists. That is

to say , if the determinant of the coefficient matrix of au/a~ is non-

vanishing. This condition obviously depends on the nature of the

~urvilinear coordinate lines ~(x, t)= const., which so far have been

chosen arbitrarily. Suppose now that for the particular choice ~ = $

the determinant does vanish, giving the condition .

I~Iat
+ ~A

ax o (4)

Then because of this the derivative au/a$ will be indeterminate on the

family of lines $ • const . Consequently, across such lines $(x, t)=

const., au/a$ may actually be discontinuous. This means that each of the

n elements aui/a$ of au/a$ may be discontinuous across any of the lines

$ const. To find how, when they occur, these discontinuities in aui/a$

are related one to the other across a curvilinear coordinate line ~ = const.,

it is necessary to reconsider equation (3).

We shall now confine attention to solutions U which are everywhere

continuous but for which the derivative au/a$ is discontinuous across

. *the particular 11ne ~ = k (say). Because of the continuity of U, and the

continuity of the elements a . . of A and b. of B, the matrices A and B will
1J 1

experience no discontinuity across $ - k. So, in the neighbourhood of a

* We call this a weak discontinui~y.
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typical point P of this line, A and B may be given their actual values at

P. In equation (3) there is no indeterminacy of au/at' across the lines

~ = const., and as a/at' denotes differentiation along these lines it

must follow that au/at' is everywhere continuous and, in particular, that

it is continuous across the line ~ • k at P.

Taking these facts into account the differencing equation (3) across

the line ~ = ~ e k at P gives

+ ~ A) [~~] • 0,
aX P a", P

(5)

where [Q] = Q_ - Q+ signifies the discontinuous jump in the quantity Q

across the line ~ z k, with Q_ denoting the value to the immediate left

of the line and Q+ the value to the immediate right at P. As the point P

was any point on this line the suffix P may now be omitted. The operator

a/a~ is differentiation normal to the curves ~ = const., so that equations

(5) express compatibility conditions to be satisfied by the component of the

derivative of U on either side of and normal to these curves in the (x, t)-

plane.

This is a homogeneous system of equations for the n jump quantities

[ au./a~] = (au./a~) - (au./a~) and there will only be a non-trivial
~ ~ - ~ +

solution if the determinant of the coefficients vanishes. The condition

for this is

I~ I
at + ~A Iax o (6)

However, along the lines ~ • const. we have, by differentiation,

o

dx
dt •

Combining

so that these lines have the gradient

_ ~ /a~ = ). (say).at ax -

(6) and (7) we deduce that ). must be- StICh:- thar:.

(7)

I A - ).1 I o • (8)
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Consequently the A in (7) can only be one of the eigenvalues of A,

and since (5) can be re-written

o • (9)

the column vector [oU/o~]must be proportional to the corresponding right

eigenvector of A. This. then. 'det ermi nes the ratios between the n elements

[ ou/o4> ] of the vector [ ou/a~] that we were seeking.

As A is an n x n matrix it will have n eigenvalues. If these are

real and distinct, integration of equations (7) will give rise to n distinct

families of real curves c(l). C(2), •••• C(n) in the (x. t)-plane:

C( i ) . ~ = A(i)
• dt i-I, 2, , .. , n. (10)

If x denotes a distance and t a time. the eigenvalues will have the

dimensions of a speed. Anyone of these families of curves C(i) may be

't aken for our curvilinear coordinate lines 4> = const. The A(i) associated

with each family will then be the speed of propagation of the matrix

column vector [ au/a~] along the curves C(i) belonging to that family.

When the eigenvalues A(i) of A are all real and distinct, so that the

propagation speeds are also all real and distinct. and there are n

distinct linearly independent right eigenvectors r(i) of A satisfying the

defining relation

(i)
r • for i = 1. 2••••• n, (11)

the system of equations (1) will be said to be totally hYperbolic. We

may. if we desire, replace the words right eigenvector by left eigenvector

in this definition. where the left eigenvectors I of A satisfy the

defining relation

for i = 1. 2••••• n. (12)

The families of Curves C(i) defined by integration of equations (10) are

called the families of characteristic curves of system (1).
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The relationship between characteristic curves and the solution

vector U to system (1) is illustrated in the Figure in the case of a

typical element ui of U. Here it has been assumed that initial conditions

have been specified for system (1) in the form

U(x, 0) = '!' (x) ,

where the ith element ui of U has for its initial condition ui(x, 0)

I.L~

x,

Since it was not necessary that aU/a~ should be discontinuous across

the characteristics ~ • const., it must follow that continuous and

differentiable elements of the initial data ui(x, 0) • ~i(x) will also

propagate along characteristics. In the case of the element of initial

data at A, this will propagate along the characteristic ~ = kl (say) starting

from the point (Xl' 0) which is the projection of A onto the initial line.

The characteristic ~ = kl is then the projection onto the (x, t)-plane

of the path AB followed by the element of the solution surface S that

started at A. Characteristics corresponding to k • k2, k3, k4, etc.,

may be interpreted i n similar fashion.

To distinguish between initial and boundary value problems °i t is

necessary to classify arcs r in the (x, t)-plane as being either time­

like or spacelike. This is done by assigning to each characteristic arc

an arrow showing the direction corresponding to increasing t, and then


