Innovationsmanagement und Entrepreneurship Hrsg.: Ronald Gleich, Patrick Spieth und Florian Täube

Volker Nestle

Open Innovation im Cluster

Eine Wirkungsanalyse zu Clusterinitiativen in forschungsintensiven Industrien

Volker Nestle

Open Innovation im Cluster

GABLER RESEARCH

Innovationsmanagement und Entrepreneurship

Herausgeber:

Professor Dr. Ronald Gleich, Professor Dr. Patrick Spieth, Professor Dr. Florian Täube

EBS Universität für Wirtschaft und Recht i. Gr., EBS Business School, Strascheg Institute for Innovation and Entrepreneurship (SIIE)

In unserer Schriftenreihe "Innovationsmanagement und Entrepreneurship" werden wichtige Ergebnisse der wissenschaftlichen und praxisorientierten Forschung des Strascheg Institute for Innovation and Entrepreneurship (SIIE) der EBS Business School veröffentlicht.

Our series includes excellent academic and practitioner oriented research in the area of innovation management and entrepreneurship which has been recently conducted at EBS Business School, Strascheg Institute for Innovation and Entrepreneurship (SIIE).

Volker Nestle

Open Innovation im Cluster

Eine Wirkungsanalyse zu Clusterinitiativen in forschungsintensiven Industrien

Mit einem Geleitwort von Prof. Dr. Ronald Gleich, Prof. Dr. Patrick Spieth und Prof. Dr. Florian Täube

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dissertation EBS Universität für Wirtschaft und Recht i. Gr., EBS Business School, 2010

1. Auflage 2011

Alle Rechte vorbehalten
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Lektorat: Marta Grabowski | Nicole Schweitzer

Gabler Verlag ist eine Marke von Springer Fachmedien. Springer Fachmedien ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.gabler.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier Printed in Germany

ISBN 978-3-8349-2923-5

Geleitwort

Geleitwort

Die vorliegende Arbeit von Herrn Volker Nestle fügt sich hervorragend in bestehende Forschungsgebiete am *Strascheg Institute for Innovation and Entrepreneurship (SIIE)* ein und bildet somit einen guten Anfang dieser neuen Schriftenreihe. Mit dem Themengebiet Open Innovation befindet sich Herr Nestle in guter Gesellschaft anderer Forscher am Institut, die sich mit Fragestellungen zu Innovationsnetzwerken befassen; geographische Cluster sind ein weiteres, eher empirisches Objekt unserer wissenschaftlichen und praxisorientierten Forschung; und schliesslich entspricht Herrn Nestles empirischer Forschungsgegenstand – der deutsche Maschinen- und Anlagenbau – einem der Schwerpunkte der akademischen und angewandten Forschung am SIIE.

Herr Nestle beschäftigt sich in seiner Dissertation mit der Untersuchung sogenannter offener Innovationsprozesse ("Open Innovation") im Kontext eines geographischen Clusters forschungsintensiver Industrien. Dabei geht er über die wichtige, aber bisher nicht abschliessend beantwortete Frage hinaus, ob Unternehmen in Clustern innovativer sind oder sonst eine bessere Performance haben als ausserhalb von Clustern. Darüber hinaus untersucht er explizit die Rolle von Clusterinitiativen, eine wichtige wirtschaftpolitische Frage in Bezug auf Regionalförderung.

Durch einen hervorragenden Datenzugang war es Herrn Nestle möglich, die implizite Frage zu stellen, ob geographische Nähe eine notwendige oder hinreichende Bedingung ist (mit der Einschränkung auf Open Innovation). Zu diesem Zweck stellt er einen theoriegeleiteten Bezugsrahmen auf, der sich mit der Rolle

VI Geleitwort

von Netzwerken, Vertrauen und verschiedenen Phasen des Innovationsprozesses auseinandersetzt und folgende drei Forschungsfragen beantworten soll:

- 1. Wie entsteht Vertrauen in einer Clusterregion und welche Rolle spielt Vertrauen bei der Generierung von Innovation
 - a) bei Akteuren innerhalb einer Clusterinitiative?
 - b) bei Akteuren außerhalb einer Clusterinitiative?
- 2. Lässt sich ein allgemeines Erklärungsmodell für die akteursübergreifenden Innovationsprozesse in Clustern ableiten
 - a) auf Basis der Transaktionskostentheorie?
 - b) auf Basis der Theorie der Informationsasymmetrien?
- 3. Fördert oder unterdrückt eine Clusterinitiative die Entstehung von Open Innovation?

Die Arbeit von Herrn Nestle hat ihre Stärken im empirischen Teil, kann aber mithilfe eines eklektischen Theorierahmens, der auf den Hauptsträngen Transaktionskosentheorie und Informationsasymmetrie beruht und durch Ansätze aus der relationalen Wirtschaftsgeographie bereichert wird, die aufgeworfenen Fragen auch in theoretischer Hinsicht beantworten. Seine zentralen Erkenntnisse fasst Herr Nestle folgendermassen zusammen:

- Open Innovation ist innerhalb der Clusterinitiative stärker ausgeprägt als außerhalb der Clusterinitiative.
- Die Clusterinitiative stimuliert die Bildung informeller Netzwerke, die die Entstehung von Vertrauen und den Abbau von Informationsasymmetrien vorantreiben.

Geleitwort VII

 Innerhalb der Clusterinitiative entfalten positive Agglomerationseffekte durchgehend positive Wirkungen für die Akteure.

aurengenena positivo vi intangen far are i inteare

Vertrauen stellt innerhalb wie außerhalb der Clusterinitiative die

Hauptvoraussetzung für Open Innovation dar.

Akteure innerhalb der Clusterinitiative öffnen eher die frühen Phasen

im Innovationsprozess und fördern damit den Technologietransfer zwi-

schen Wissenschaft und Wirtschaft.

Akteure außerhalb der Clusterinitiative öffnen eher die späten Phasen

im Innovationsprozess und fokussieren damit die Technologiekommer-

zialisierung.

Bei der Evaluation von Clustern sind eventuell vorhandene Teilgrup-

pen in der Gesamtheit der Akteure methodisch zu berücksichtigen.

Wir freuen uns, dass Herr Volker Nestle mit seiner theoretisch, empirisch und

praktisch-wirtschaftspolitisch ausgewogenen Arbeit diese Schriftenreihe eröff-

net. Die Arbeit wurde als Monographie verfasst, wir sind jedoch überzeugt, dass

Teile daraus als Veröffentlichungen Eingang in qualitativ hochwertige wissen-

schaftliche Journals bzw. praxis-orientierte Beiträge finden werden.

Viel Vergnügen bei der Lektüre wünschen Ihnen,

Ihre

Prof. Dr. Ronald Gleich

Prof. Dr. Patrick Spieth

Prof. Dr. Florian Täube

Vorwort

Die vorliegende Dissertationsschrift "Open Innovation im Cluster" entstand im Rahmen meines berufsbegleitenden Doktorandenstudiums an der European Business School / Oestrich-Winkel im Strascheg Institut für Innovation und Entrepreneurship (SIIE) unter der Leitung meines Doktorvaters Prof. Dr. Ronald Gleich. Seine professionelle und kompetente Betreuung eröffnete mir die Möglichkeit, das Thema Innovation in Netzwerken und Clustern, welches mich als Forschungsingenieur bereits viele Jahre meines Berufslebens intensiv beschäftigt, aus wissenschaftlicher Perspektive aufzuarbeiten und neue empirische Ergebnisse mit hoher Relevanz für die ökonomische Praxis zu gewinnen. Ich bedanke mich bei Prof. Dr. Ronald Gleich und meiner Zweitgutachterin Prof. Dr. Inga-Lena Darkow für die zahlreichen Impulse und motivierenden Gespräche, die wir in dieser Zeit führen konnten und freue mich auf die weitere Zusammenarbeit.

Bei Prof. Dr. Florian Täube bedanke ich mich ganz besonders für die hervorragende fachliche Unterstützung meines Dissertationsvorhabens. Durch seine hohe Kompetenz im Bereich der Cluster- und Netzwerkforschung lieferte er mir stets wertvolle Hinweise zur thematischen Ausrichtung meiner Arbeit und hat so maßgeblich zu deren Gelingen beigetragen. Wir werden uns auch sicher in Zukunft noch beruflich und freundschaftlich verbunden bleiben.

Ich danke außerdem allen MitarbeiterInnen des SIIE für die freundschaftliche Unterstützung, die ich als externer Doktorand erhalten konnte. Gleichgültig ob bei Forschungskolloquien, bei Fragen zur Infrastruktur oder Literaturbeschaftung, ich stieß immer auf ein offenes Ohr und große Hilfsbereitschaft. Allen voran möchte ich hier Sven Heidenreich und Thorben Schmidt nennen und

X Vorwort

hoffe, dass auch sie ihre Promotionsvorhaben inzwischen erfolgreich abgeschlossen haben, obwohl ich sie ständig mit meinen Fragen von der Arbeit abgehalten habe.

Besonders bedanken möchte ich mich auch bei Alina Thiel und Peter Jeuk vom Verein für Mikrosystemtechnik Baden-Württemberg e.V. (MSTBW), die mich im Rahmen der quantitativen Erhebung für die vorliegende Arbeit hervorragend unterstützt und es damit ermöglicht haben, ein im Bereich der Clusterforschung schwierig anzuwendendes Forschungsdesign in der Praxis umzusetzen. In diesem Zusammenhang gilt mein Dank auch Dr. Björn Sautter vom Steinbeis Europa Zentrum für die vielen interessanten und inspirierenden Gespräche rund um die Wirtschaftsgeographie.

Stellvertretend für meinen Arbeitgeber Festo AG & Co. KG bedanke ich mich bei Dr. Peter Post, der mich im Laufe meiner verschiedenen berufsbegleitenden Weiterbildungen stets als Mentor begleitet und beraten hat. Ich weiß es sehr zu schätzen, diese Möglichkeiten gehabt zu haben und freue mich darauf, das Gelernte in die Tat umzusetzen. Die gewonnenen wirtschaftswissenschaftlichen Erkenntnisse empfinde ich als große Bereicherung meiner ingenieurswissenschaftlichen Perspektive.

Zuletzt (und doch allen voran) möchte ich meiner lieben Frau Krisztina von ganzem Herzen dafür danken, mir entlang meiner berufsbegleitenden Weiterbildungen auch in den schwersten Situationen den Rücken freigehalten, mich motiviert und gestützt zu haben. Ohne ihr großes Verständnis und Ihre Liebe wäre die vorliegende Dissertationsschrift nicht möglich gewesen. Ihr ist diese Arbeit gewidmet.

Na H-Uain A's T-Earrach!

Inhaltsverzeichnis XI

Inhaltsverzeichnis

G	Geleitwort		V
V	orwort		IX
I1	nhaltsverzeich	nnis	Xl
A	bbildungsver	zeichnis	XV
Т	abellenverzei	chnis	XIX
A	bkürzungsve	rzeichnis	XXIII
1	Einleitung	g	1
	1.1 Moti	vation und Forschungsfragen	1
	1.2 Gang	g der Untersuchung	5
2		cher Hintergrund und Hypothesenentwicklung	
	2.1 Defin	nition und Abgrenzung	9
	2.2 Clus	ter als eklektisches Konzept	12
	2.3 Baus	steine einer Clustertheorie	14
	2.3.1	Räumliche Perspektive: Organisation	16
	2.3.1.1	Innovative Assets und Unternehmensgrenze	18
	2.3.1.2	Transaktionskosten und Unternehmensgrenze	23
	2.3.2	Räumliche Perspektive: Agglomeration	27
	2.3.3	Funktionale Perspektive: Interaktion	29
	2.3.3.1	Unternehmensnetzwerke als relationale Struktur	29
	2.3.3.2	Soziale Netzwerke als relationale Struktur	30
	2.3.3.3	Wettbewerbsfähigkeit	33
	2.3.3.4	Vertrauen	36
	2.3.3.5	Institutionalisierung	39
	2.3.4	Zeitliche Perspektive: Clusterentwicklung	44
	2.3.4.1	Lebenszyklusmodell der klassischen Standorttheorie	44
	2.3.4.2	Evolutionsbasierter Clusterungsprozess	47
	2.3.4.3	Pfadabhängigkeit	49

	2.3.5	Ergebnisperspektive: Innovation	51
	2	3.5.1 Dimensionen von Innovation	53
	2	3.5.2 Open und Closed Innovation	60
	2	3.5.3 Technologiebeschaffung und -kommerzialisierung	64
	2	3.5.4 Open Innovation und Unternehmenskultur	71
	2.4	Konzeptionalisierung der Clustertheorie	77
	2.4.1	Porter's Diamant der Wettbewerbsfähigkeit	77
	2.4.2	Mehrdimensionales Clusterkonzept	81
	2.4.3	Agglomerationsnachteile	86
	2.5	Stand der empirischen Forschung	88
	2.6	Vorüberlegungen zum Forschungsdesign	94
	2.7	Hypothesenentwicklung	96
	2.7.1	Agglomeration, Netzwerke und Informationsasymmetrien	96
	2.7.2	Netzwerke und Vertrauen	99
	2.7.3	Informationsasymmetrien, Transaktionskosten und Open	
		Innovation	100
	2.7.4	Vertrauen im Cluster	102
	2.7.5	Open Innovation Prozesse im Cluster	108
	2.8	Bezugsrahmen	110
3	Fors	chungsintensive Technologien am Beispiel	
	der l	Mikrosystemtechnik	112
	3.1	Abgrenzung forschungsintensiver Industrien	112
	3.2	Mikrosystemtechnik	116
4	Meth	nodik und Datenerhebung	119
	4.1	Forschungsdesign	119
	4.1.1	Einordnung in die Evaluationsforschung	119
	4.1.2	Analyseebene und Analyseeinheiten	121
	4.1.3	Beschreibung der Grundgesamtheit: Experimental- und	
		Vergleichsgruppe	122
	4.2	Strukturgleichungsmodelle	125
	4.3	Auswahl des Verfahrens	127

	4.4 Güt	ekriterien für PLS-Strukturgleichungsmodelle	130
	4.4.1	Gütekriterien für reflektive Messmodelle	132
	4.4.2	Gütekriterien für formative Messmodelle	135
	4.4.3	Gütekriterien für Strukturmodelle	137
	4.4.4	Gütekriterien zur Gesamtbeurteilung von	
		Strukturgleichungsmodellen	138
	4.5 Met	hodik für Gruppenvergleiche	139
	4.6 Kor	nstruktoperationalisierungen	141
	4.7 Date	enerhebung	149
	4.7.1	Methodenfehler	149
	4.7.2	Fragebogendesign	152
	4.7.3	Durchführung der Erhebung	155
5	Ergebnis	se	161
	5.1 Des	kriptive Ergebnisse	161
	5.1.1	Zusammensetzung der Rückläufer	161
	5.1.2	Ergebnisse zu Agglomerationseffekten	164
	5.1.3	Ergebnisse zu formalen Netzwerken	165
	5.1.4	Ergebnisse zu informellen Netzwerken	166
	5.1.5	Ergebnisse zu Informationsasymmetrien	168
	5.1.6	Ergebnisse zu Open Innovation	172
	5.1.7	Ergebnisse zu Asset-Spezifitäten	177
	5.1.8	Ergebnisse zu Vertrauen	179
	5.1.9	Handlungsfelder des Clustermanagements	180
	5.1.10	Einfluss von Kontrollvariablen	184
	5.2 Prü	fung der Messmodelle	189
	5.2.1	Güte der reflektiven Konstrukte	189
	5.2.2	Güte der formativen Konstrukte	198
	5.2.3	Single-Item-Operationalisierung und Zusammenfassung	201
	5.3 Prüt	fung des Strukturmodells	201
	5.3.1	Hypothesentests	201
	5.3.2	Bestimmtheitsmaße und Prognoserelevanz	214

XIV Inhaltsverzeichnis

	5.3.	Gruppenvergleich zur Wirkungsanalyse der Clusterinitia	tive217
6	Disl	kussion und Schlussfolgerung	220
	6.1	Beantwortung der Forschungsfragen	220
	6.2	Kritische Würdigung der Vorgehensweise	225
	6.3	Implikationen für die Praxis	227
	6.3.	1 Implikationen für Clustermanager	227
	6.3.	2 Implikationen für Clusterakteure in Wissenschaft und	
		Wirtschaft	229
	6.3.	3 Implikationen für die öffentliche Hand	231
	6.4	Implikationen für die weiterführende Forschung	233
	6.5	Zusammenfassung und Ausblick	235
7	Lite	raturverzeichnis	

Abbildungsverzeichnis

Abbildung 1-1:	Gang der Untersuchung	8
Abbildung 2-1:	Konzeptionsvielfalt zur Thematik Raum, Wissen und	
	wirtschaftliche Entwicklung	13
Abbildung 2-2:	Wissenschaftsbereiche als Basis einer Clustertheorie	14
Abbildung 2-3:	Grenzen der Unternehmung	17
Abbildung 2-4:	Ressourcen, Fähigkeiten und Wettbewerbsvorteile	19
Abbildung 2-5:	Zusammenhang zwischen Opportunismusgefahr,	
	Informationsasymmetrie und institutionellem	
	Arrangement	23
Abbildung 2-6:	Zusammenhang zwischen Asset-Spezifitäten,	
	Koordinationskosten und institutionellem Arrangement	25
Abbildung 2-7:	Fünf-Kräfte-Modell nach Porter	34
Abbildung 2-8:	Begriffsabgrenzung zur Clusterentwicklung	41
Abbildung 2-9:	Einbettung des Clusterphänomens in den nationalen	
	Handlungsrahmen	42
Abbildung 2-10:	Cluster- und Netzwerkprogramme in Deutschland	
	seit 1995	43
Abbildung 2-11:	Idealtypischer Lebenszyklus von Clustern	45
Abbildung 2-12:	Phasen industrieller Wachstumspfade	48
Abbildung 2-13:	Phasen der Pfadabhängigkeit	50
Abbildung 2-14:	Empirischer Befund zu Clustern und Innovation	
	in Europa	52
Abbildung 2-15:	Innovationsprozess der soziotechnischen	
	Systemtheorie auf Mesoebene	57
Abbildung 2-16:	Stage-Gate-Prozesse der zweiten und	
	dritten Generation	59
Abbildung 2-17:	Open Innovation Prozesse	62

Abbildung 2-18:	i echnologie- und marktbezogene
	absorptive Fähigkeiten68
Abbildung 2-19:	Wissenskommerzialisierung nach Grad der
	organisatorischen Integration69
Abbildung 2-20:	Ebenen und Elemente der Open Innovation Kultur im
	Unternehmen76
Abbildung 2-21:	Porter's Diamant der Wettbewerbsfähigkeit78
Abbildung 2-22:	Cluster als mehrdimensionales lokalisiertes
	Wertschöpfungssystem
Abbildung 2-23:	Wissenstransfer durch Local Buzz und Global Pipelines 86
Abbildung 2-24:	Lokalisation der Automobil-Cluster in Deutschland87
Abbildung 2-25:	Im SSCI gelistete Clusterpublikationen
	von 1991 bis 200789
Abbildung 2-26:	Beschleunigter Abbau von Informationsasymmetrien
	durch Vertrauen
Abbildung 2-27:	Zusammenhang zwischen Asset-Spezifität,
	Koordinationskosten und institutionellem
	Arrangement in Abhängigkeit von Vertrauen105
Abbildung 2-28:	Zusammenhang zwischen Opportunismusgefahr,
	Informationsasymmetrie und institutionellem
	Arrangement in Abhängigkeit von Vertrauen106
Abbildung 2-29:	Bezugsrahmen und Hypothesenmodell111
Abbildung 3-1:	Schlüsseltechnologien und Leitmärkte der Zukunft116
Abbildung 3-2:	Lokalisationsgrad der MST-Hauptanwenderbranchen 118
Abbildung 4-1:	Interdependente Dimensionen der Programm-
	forschung
Abbildung 4-2:	Einzugsgebiet und Lokalisation der Akteure der
	Wissenschaft des MST-Clusters
Abbildung 4-3:	Allgemeine Darstellung eines vollständigen
	Strukturgleichungsmodells
Abbildung 5-1:	Verteilung der Zielbranchen

Abbildung 5-2:	Verteilung der Unternehmensgrößen nach	
	Umsatz und Mitarbeiterzahl	162
Abbildung 5-3:	F&E-Anteil am Umsatz nach Unternehmensgröße	163
Abbildung 5-4:	Arithmetische Mittelwerte zum Konstrukt	
	"Agglomerationseffekte"	164
Abbildung 5-5:	Arithmetische Mittelwerte zum Konstrukt "Formale	
	Netzwerke"	166
Abbildung 5-6:	Arithmetische Mittelwerte zum Konstrukt "Informelle	
	Netzwerke"	167
Abbildung 5-7:	Arithmetische Mittelwerte zum Konstrukt "Hidden	
	Characteristics"	169
Abbildung 5-8:	Arithmetische Mittelwerte zum Konstrukt "Hidden	
	Information"	171
Abbildung 5-9:	Arithmetische Mittelwerte zum Konstrukt	
	"NIH-Syndrom"	173
Abbildung 5-10:	Arithmetische Mittelwerte zum Konstrukt	
	"NSH-Syndrom"	174
Abbildung 5-11:	Arithmetische Mittelwerte zum Konstrukt	
	"OI-Sensibilität"	176
Abbildung 5-12:	Arithmetische Mittelwerte zum Konstrukt	
	"Asset-Spezifitäten"	177
Abbildung 5-13:	Arithmetische Mittelwerte zum Konstrukt "Vertrauen".	179
Abbildung 5-14:	Arithmetische Mittelwerte zu den Handlungsfeldern	
	des Clustermanagements	182
Abbildung 5-15:	Ausprägung des NIH- und NSH-Syndroms nach der	
	Zielbranche	185
Abbildung 5-16:	Ausprägung des NIH- und NSH-Syndroms nach	
	F&E-Anteil vom Umsatz	186
Abbildung 5-17:	Ausprägung des NIH- und NSH-Syndroms	
	nach Umsatz	188

Tabellenverzeichnis XIX

Tabellenverzeichnis

Tabelle 2-1:	Typisierung der ökonomischen Agglomeration	.10
Tabelle 2-2:	Charakteristische Eigenschaften von	
	Netzwerken und Clustern	.12
Tabelle 2-3:	Netzwerke zwischen Markt und Hierarchie	.29
Tabelle 2-4:	Neuorientierung der Strukturpolitik	.42
Tabelle 2-5:	Charakteristika von Open Innovation Prozessen	.63
Tabelle 2-6:	Möglichkeiten zur Technologiebeschaffung	.65
Tabelle 2-7:	Kategorisierung des technologiebezogenen	
	Wissensmanagements	.71
Tabelle 2-8:	Verhaltensnormen des technologiebezogenen	
	Wissensmanagements	.75
Tabelle 2-9:	Ausgewählte Clusterstudien zu unterschiedlichen	
	Schwerpunkten	.92
Tabelle 2-10:	Typische Forschungsdesigns in Wirkungsanalysen	.94
Tabelle 3-1:	Vergleich etablierter und forschungsintensiver	
	Industrien	113
Tabelle 4-1:	Analyseebenen bei der Identifikation und Analyse von	
	Clustern	121
Tabelle 4-2:	Varianz- und kovarianzbasierte Methoden im Vergleich	128
Tabelle 4-3:	Fragenkatalog zur Unterscheidung reflektiver	
	und formativer Konstrukte	131
Tabelle 4-4:	Gütekriterien reflektiver Messmodelle	134
Tabelle 4-5:	Gütekriterien formativer Messmodelle	136
Tabelle 4-6:	Gütekriterien für Strukturmodelle	138
Tabelle 4-7:	Tabellarische Auflistung der verwendeten Items	148
Tabelle 4-8:	Übersicht der Hierarchiestufe der	
	antwortenden Personen	156

XX Tabellenverzeichnis

Tabelle 4-9:	Mittelwertvergleich der früh und spät Antwortenden 158
Tabelle 4-10:	Chi ² -Test der früh und spät Antwortenden158
Tabelle 4-11:	Mittelwertvergleich von Experimental- und
	Vergleichsgruppe159
Tabelle 4-12:	Chi ² -Test der Experimental- und Vergleichsgruppe
Tabelle 5-1:	Arithmetische Mittelwerte und t-Werte zum Konstrukt
	"Agglomerationseffekte"
Tabelle 5-2:	Arithmetische Mittelwerte und t-Werte zum Konstrukt
	"Formale Netzwerke"
Tabelle 5-3:	Arithmetische Mittelwerte und t-Werte zum Konstrukt
	"Informelle Netzwerke"167
Tabelle 5-4:	Arithmetische Mittelwerte und t-Werte zum Konstrukt
	"Hidden Characteristics"169
Tabelle 5-5:	Arithmetische Mittelwerte und t-Werte zum Konstrukt
	"Hidden Information"171
Tabelle 5-6:	Arithmetische Mittelwerte und t-Werte zum
	Konstrukt "NIH-Syndrom"
Tabelle 5-7:	Arithmetische Mittelwerte und t-Werte zum
	Konstrukt "NSH-Syndrom"
Tabelle 5-8:	Arithmetische Mittelwerte und t-Werte zum
	Konstrukt "OI-Sensibilität"176
Tabelle 5-9:	Arithmetische Mittelwerte und t-Werte zum
	Konstrukt "Asset-Spezifitäten"177
Tabelle 5-10:	Arithmetische Mittelwerte und t-Werte zum
	Konstrukt "Vertrauen"
Tabelle 5-11:	Arithmetische Mittelwerte und t-Werte zu den
	Handlungsfeldern des Clustermanagements
Tabelle 5-12:	Ausprägung und t-Werte des NIH- und NSH-Syndroms
	nach der Zielbranche185
Tabelle 5-13:	Ausprägung und t-Werte des NIH- und NSH-Syndroms
	nach F&E-Anteil vom Umsatz187

Tabelle 5-14:	Ausprägung und t-Werte des NIH- und NSH-Syndroms	
	nach Umsatz	188
Tabelle 5-15:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Informelle Netzwerke"	190
Tabelle 5-16:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Hidden Characteristics"	191
Tabelle 5-17:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Hidden Information"	192
Tabelle 5-18:	Gütemaße auf Messmodellebene für das Konstrukt	
	"NIH-Syndrom"	194
Tabelle 5-19:	Gütemaße auf Messmodellebene für das Konstrukt	
	"NSH-Syndrom"	195
Tabelle 5-20:	Gütemaße auf Messmodellebene für das Konstrukt	
	"OI-Sensibilität"	196
Tabelle 5-21:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Asset-Spezifitäten"	197
Tabelle 5-22:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Agglomerationseffekte"	199
Tabelle 5-23:	Gütemaße auf Messmodellebene für das Konstrukt	
	"Vertrauen"	200
Tabelle 5-24:	Single-Item-Operationalisierung des Konstrukts	
	"Formale Netzwerke"	201
Tabelle 5-25:	Gütemaße zu Hypothese H1	202
Tabelle 5-26:	Gütemaße zu Hypothese H2	203
Tabelle 5-27:	Gütemaße zu Hypothese H3	204
Tabelle 5-28:	Gütemaße zu Hypothese H4	205
Tabelle 5-29:	Gütemaße zu Hypothese H5	206
Tabelle 5-30:	Gütemaße zu Hypothese H6	207
Tabelle 5-31:	Gütemaße zu Hypothese H7	208
Tabelle 5-32:	Gütemaße zu Hypothese H8	209
Tabelle 5-33:	Gütemaße zu Hypothese H9	210

XXII Tabellenverzeichnis

Tabelle 5-34:	Gütemaße zu Hypothese H10	211
Tabelle 5-35:	Gütemaße zu Hypothese H11	212
Tabelle 5-36:	Ergebnisse des Hypothesentests	213
Tabelle 5-37:	Bestimmtheitsmaße der Konstrukte und	
	Prognoserelevanz auf Strukturmodellebene	215
Tabelle 5-38:	Moderatorfunktion der Clusterinitiative	217

Abkürzungsverzeichnis

ACAP absorptive capacities

ATT average effect of treatment on the treated

BI Buy-In

BMBF Bundesministerium für Bildung und Forschung

bzgl. bezüglich

bzw. beziehungsweise CI Clusterinitiative

CMV Common Method Variance

DEV durchschnittlich erklärte Varianz

ebd. ebenda et al. und andere

EU Europäische Union

ex ante vorher ex post danach f. folgende

F&E Forschung und Entwicklung

ggf. gegebenenfalls

GPT General Purpose Technology

HR Human Resources Hrsg. Herausgeber

IC Innovational Complementarities

IP Intellectual Property
KI Konditionsindex

KMU kleine und mittlere Unternehmen

LOI Letter of Intent LPL Leiterplatten

MST Mikrosystemtechnik

NASA National Aeronautics and Space Administration

NIH Not-Invented-Here

NSH Not-Sold-Here o.g. oben genannte

OECD Organisation für wirtschaftliche Zusammenarbeit und Entwicklung

OI Open Innovation OUH Only-Used-Here PA Principal-Agent

per se an sich

PLS Partial Least Squares
PPP Phased Project Planning

S. Seite

SITC Standard International Trade Classification

SO Sell-Out

SSCI Social Science Citation Index
USA Vereinigte Staaten von Amerika

v.a. vor allem

VC Venture Capital

vgl. vergleiche vice versa umgekehrt

VIF Varianzinflationsfaktor VPP Value Proposition Process

z.B. zum Beispiel

z.T. zum Teil

1 Einleitung

1.1 Motivation und Forschungsfragen

Im Zuge der Globalisierung sehen sich Unternehmen heute einer stetigen Verschärfung ihrer Wettbewerbssituation gegenüber, in der für Erhalt und Ausbau der Wettbewerbsfähigkeit neben den unternehmenseigenen Ressourcen und Fähigkeiten die Standortfaktoren zunehmend an Bedeutung gewinnen (vgl. Porter, 1999, S. 223). Es ist daher kaum verwunderlich, dass die räumliche Konzentration¹ von Unternehmen gleicher oder komplementärer Branchen und die darin begründete Anhäufung mobiler Produktionsfaktoren in zunehmendem Maße die Standortwahl von Unternehmen beeinflussen. So ist z.B. inzwischen für jedes fünfte in einer Clusterregion angesiedelte Unternehmen in Europa die räumliche Konzentration der ausschlaggebende Faktor für die Standortwahl gewesen (vgl. Gallup, 2006, S. 11). Die zugrundeliegende Annahme, dass das Umfeld von Unternehmen Quelle von Wettbewerbsvorteilen sein kann, ist zwar historisch weit zurück verfolgbar (z.B. Marshall, 1890; von Thünen, 1930), erlangte aber erst durch Michael Porter's Abhandlung "The Competitive Advantage of Nations" (Porter, 1990) in neuerer Zeit große Aufmerksamkeit in Wirtschaft, Wissenschaft und Politik. Die Standortwahl wird aus drei zentralen Gründen mit der Innovations- und Wettbewerbsfähigkeit von Unternehmen in Verbindung gebracht (vgl. Gordon & McCann, 2000, S. 515; Harrison, 1994; Porter, 1990).

• Erstens ergeben sich in räumlicher Konzentration Vorteile in Form von industriespezifischen und produktionsbezogenen Kosteneinsparpoten-

_

Die Begriffe "Agglomeration" und "Konzentration" überschneiden sich inhaltlich. Anders als beim Begriff der Agglomeration muss aber der räumliche Aspekt bei Verwendung des Begriffs der Konzentration stets explizit genannt werden, wenn die Begriffe – wie in der vorliegenden Arbeit – synonym verstanden werden sollen (vgl. Müller, 1977, S. 455).

V. Nestle, *Open Innovation im Cluster,* DOI 10.1007/978-3-8349-6753-4_1, © Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2011

2 Einleitung

zialen. Diese können im wesentlichen durch den Zusammenhang zwischen räumlicher Nähe und Transaktionskosten in formalen und stabilen Unternehmensbeziehungen entlang der Wertschöpfungskette begründet werden (vgl. Scott, 1992; Weber, 1929).

- Zweitens entstehen mit der Ausbildung lokalisierter industriespezifischer Wertschöpfungsketten weitere Agglomerationseffekte in Form eines gut strukturierten lokalen Arbeitsmarkts mit einem ausreichenden Angebot an benötigten Fachkräften (vgl. Marshall, 1890; Scott, 1992). Die räumliche Nähe und der Vergleich mit Wettbewerbern generieren außerdem Innovationsanreize (vgl. Burt, 1987; Harrison, Kelley, und Gant, 1996; Malmberg & Maskell, 2002). Darüber hinaus fördert die räumliche Nähe aufgrund von Spillover-Effekten eine schnelle Ausbreitung von Wissen zwischen Unternehmen und Institutionen (vgl. Dosi, 1988, S.1125; Gordon & McCann, 2000, S.516; Marshall, 1890).
- Drittens liefert das Erklärungsmodell sozialer Netzwerke (vgl. Granovetter, 1985; Harrison, 1992) eine Begründung für das Entstehen von Sozialkapital durch räumliche Nähe. Die Bildung lokaler Interessensgemeinschaften im Umfeld einer interpersonellen Vertrauensbasis in informellen unternehmensübergreifenden Netzwerken führt dabei zu ähnlichen, mitunter sogar stärker ausgeprägten Effekten wie die der Agglomeration oder der formalen Unternehmensbeziehungen.

Die Entstehung von Agglomerationseffekten kann auf Basis formaler ökonomischer Beziehungen durch die Kombination von Zufall und dem Gesetz der großen Zahlen erklärt werden: je größer die Anzahl der ökonomischen Akteure in räumlicher Konzentration, desto größer ist auch die Wahrscheinlichkeit, dass sich Agglomerationseffekte einstellen (vgl. Gordon & McCann, 2000, S. 517). Ausgehend von der Beobachtung, dass die räumliche Konzentration ökonomischer Akteure die Regionalentwicklung zwar positiv beeinflussen kann, die erhoffte Eigendynamik jedoch häufig nur in begrenztem Maße eintritt, werden zunehmend Clusterinitiativen zur zielgerichteten Förderung vorhandener regio-

naler Stärken in potenziellen Wachstumsfeldern etabliert (vgl. Foray & Mairesse, 2002, S. 50; Terstriep, 2007, S. 60), allerdings mit stark unterschiedlichem Erfolg (vgl. Ketels, Lindqvist, und Sölvell, 2008, S. 7 f.). In diesem Umfeld wird insbesondere bei öffentlich geförderten Initiativen der Professionalisierung des Clustermanagements eine große Bedeutung für die erfolgreiche Regionalentwicklung zugeschrieben (vgl. BMBF, 2006, S. 11).

Sowohl im allgemeinen Sprachgebrauch als auch in der wissenschaftlichen Fachliteratur und den empirischen Arbeiten zur Clustertheorie zeigt sich jedoch, dass zwischen Clustern (als raumwirtschaftliches Phänomen) und Clusterinitiativen (als gezielte Maßnahme zur Bündelung regionaler Aktivitäten mit dem Ziel der Generierung von Wettbewerbsvorteilen) nach wie vor kaum differenziert wird (vgl. Kapitel 2.1). Diese begriffliche Unschärfe trägt wesentlich dazu bei, dass das Clusterphänomen bis heute als noch immer unzureichend empirisch überprüft gilt (vgl. Davies & Ellis, 2000, S. 1202; Martin & Sunley, 2003, S. 9; McDonald, Tsagdis, und Huang, 2006, S. 538). Zwar wurde vielfach vorwiegend an Fallstudien gezeigt, dass Unternehmen in Clustern sowohl schneller und innovativer als auch erfolgreicher sind als jene, die nicht in Clustern angesiedelt sind (vgl. Baptista & Swann, 1998, 1999; Bell, 2005; bzw. Kapitel 2.5), aber zu Wirkungszusammenhängen und Erfolgsfaktoren von Clustern sowie insbesondere zur Evaluation von Clusterinitiativen fehlen nach wie vor empirische Arbeiten. In den Programmen zur Clusterförderung liegt daher noch häufig der Verdacht nahe, dass sich Clusterinitiativen nur temporär zusammenfinden, um sich nach Ablauf der Fördermaßnahmen wieder aufzulösen (vgl. Ketels, Lindqvist, und Sölvell, 2008). Das fundamentale kontrafaktische Problem der Evaluation von Clusterinitiativen besteht darin, dass die Auswirkungen von Clustermanagement nicht an ein und demselben Akteur geprüft werden können: ein Akteur kann entweder Mitglied oder aber Nichtmitglied einer Clusterinitiative sein. Häufig wird daher versucht, den durchschnittlichen moderierenden Einfluss der Clusterinitiative auf bestimmte Zielgrößen für die Gruppe der Mit4 Einleitung

glieder und Nichtmitglieder zu ermitteln bzw. abzuschätzen². Allerdings sind ausschließliche Zielgrößenvergleiche aufgrund der fehlenden Randomisierung bei der Gruppenzuordnung nicht zur Bestimmung moderierender Effekte geeignet, da nicht ausgeschlossen werden kann, dass sich beobachtbare und insbesondere nicht beobachtbare Merkmale von Mitgliedern und Nichtmitgliedern einer Clusterinitiative systematisch unterscheiden. Sollten systematische Differenzen dieser Merkmale die Zielgrößen beeinflussen, würden deren Auswirkungen fälschlicherweise der Clusterinitiative zugeschrieben. Die kontrafaktische Situation führt also zur Frage der Kausalität³.

Die vorliegende Arbeit adressiert dieses methodische Problem, indem über ein hypothesengeleitetes quasi-experimentelles Forschungsdesign Wirkungsanalysen innerhalb und außerhalb einer Clusterinitiative vorgenommen werden. Im Zentrum der Betrachtung stehen also nicht die Ausprägungen direkt beobachtbarer Zielgrößen, sondern vielmehr die Umstände ihrer Entstehung. Dazu wird durch Kombination der zentralen Bausteine einer Clustertheorie auf Basis eines eklektischen Konzepts ein Hypothesenmodell entwickelt, welches Zielgrößen und Ursache- Wirkungs- Beziehungen gleichermaßen integriert. Durch Anwendung eines Strukturgleichungsmodells können auf Basis der erhobenen Daten sowohl in den Zielgrößen als auch in den hypothetischen Ursache- Wirkungs-Beziehungen die wesentlichen Differenzen zwischen den Gruppen aufgedeckt und so die moderierende Wirkung der Clusterinitiative bestimmt werden.

Insbesondere in forschungsintensiven Industrien gilt die interdisziplinäre und unternehmensübergreifende Vernetzung von Wissen entlang des Innovationsprozesses aus verschiedenen Gründen als zentraler Erfolgsfaktor für Aufbau und Erhalt der Wettbewerbsfähigkeit (vgl. Howells, James, und Malik, 2003, S. 398 bzw. Kapitel 2.3.5.2 und 2.3.5.3). Die Arbeit greift dies auf und fokussiert damit thematisch die vieldiskutierten Aspekte von Open Innovation in forschungsin-

Dieser Effekt wird in der wissenschaftlichen Literatur auch als "average effect of treatment on the treated" (ATT) bezeichnet (vgl. Geneletti & Dawid, 2007, S. 1)

Vor dem Hintergrund der erwähnten empirischen Ergebnisse provoziert dies z.B. die Frage, ob Unternehmen innovativer sind, weil sie sich innerhalb eines Clusters niedergelassen haben, oder ob innovative Unternehmen generell eher zur Clusterung neigen.

tensiven Industrien. Damit generiert die Arbeit über die neuen Erkenntnisse für die standorttheoretischen Wirtschaftswissenschaften sowie die Wirtschaftsgeographie und Regionalökonomie hinaus wesentliche Implikationen für die Gestaltung und Evaluation von Clusterförderung durch die öffentliche Hand sowie deren praktische Umsetzung in Clusterinitiativen.

Um bereits in einer frühen Phase des Forschungsprozesses eindeutige Orientierungspunkte vorzugeben (vgl. Bryman, 2007, S. 5), werden die zentralen Forschungsfragen der Arbeit wie folgt zusammengefasst und ausformuliert:

Forschungsfrage 1:

Wie entsteht Vertrauen in einer Clusterregion und welche Rolle spielt Vertrauen bei der Generierung von Innovation

- a) bei Akteuren innerhalb einer Clusterinitiative?
- b) bei Akteuren außerhalb einer Clusterinitiative?

Forschungsfrage 2:

Lässt sich ein allgemeines Erklärungsmodell für die akteursübergreifenden Innovationsprozesse in Clustern ableiten

- a) auf Basis der Transaktionskostentheorie?
- b) auf Basis der Theorie der Informationsasymmetrien?

Forschungsfrage 3:

Fördert oder unterdrückt eine Clusterinitiative die Entstehung von Open Innovation?

1.2 Gang der Untersuchung

Die Arbeit verfolgt im Sinne des kritischen Empirismus eine Falsifikationsstrategie, indem auf Basis theoretischer Vorüberlegungen überprüfbare hypothetische Aussagen generiert werden, an welchen anhand empirisch zu gewinnender Daten der Versuch einer Falsifikation durchgeführt wird (vgl. Popper, 2005). Diese Forschungsstrategie scheint insbesondere in Anbetracht der hohen Diversität und Komplexität des Clusterphänomens (vgl. Kapitel 2) angebracht,

6 Einleitung

welche eine Position des logischen Positivismus mit dem Versuch der Entwicklung einer allgemeingültigen Clustertheorie durch Induktion als nicht zielführend erscheinen lassen.

Im theoretischen Teil der Arbeit werden daher in Kapitel 2.1 zunächst die notwendigen Abgrenzungen und Grundlagen für das Verständnis einer Clustertheorie geschaffen. Auf Basis eines eklektischen Clusterkonzepts (Kapitel 2.2) werden in Kapitel 2.3 die zur Beantwortung der Forschungsfragen relevanten Wissenschaftstheorien extrahiert und unter Angabe des Bezugs zur vorliegenden Arbeit detailliert vorgestellt. Anhand der Vorstellung ausgewählter theoretischer Konzeptionalisierungen der Clustertheorie in Kapitel 2.4 kann beispielhaft nachvollzogen werden, wie die verschiedenen wissenschaftlichen Perspektiven zu einem geschlossenen Ansatz integriert werden können. Kapitel 2.5 liefert anhand eines Querschnitts zum empirischen Stand der Forschung Begründung und zugleich Motivation für das vorliegende Forschungsvorhaben. Anhand einer Übersicht zu Untersuchungsformen, welche zur Bearbeitung der vorliegenden Fragestellungen geeignet sind, wird in Kapitel 2.6 die Vorauswahl des Forschungsdesigns für den weiteren Verlauf der Arbeit begründet. So kann vor dem Hintergrund des hier gewählten theoriegeleiteten Ansatzes deutlich gemacht werden, warum die Generierung von Hypothesen für den Fortschritt der Arbeit notwendig ist. Die Entwicklung des Hypothesenmodells wird dann in Kapitel 2.7 auf Basis der zuvor diskutierten Theoriebausteine durchgeführt. Dazu werden zunächst die Auswirkungen von Agglomerationseffekten auf die Ausbildung von Netzwerken und Informationsasymmetrien im Cluster fokussiert. In der Gegenüberstellung von Informationsasymmetrien und der Transaktionskostentheorie wird dann die Entstehung von Open Innovation im Cluster aus verschiedenen Perspektiven betrachtet. Die Diskussion von Innovationsprozessen in der Gegenüberstellung konkurrierender Wissenschaftstheorien leistet einen wichtigen Beitrag zum wissenschaftlichen Verständnis von Clustern. Ein weiterer Schwerpunkt der Hypothesenentwicklung beschäftigt sich mit der Entstehung sowie den Auswirkungen von Vertrauen in Clustern. Hier werden insbesondere die Zusammenhänge zwischen Vertrauen, Informationsasymmetrien

und Open Innovation Prozessen thematisiert. In Kapitel 2.8 wird das so entwickelte Hypothesenmodell dann im Bezugsrahmen, der als Grundlage für die weitere Untersuchung dient, zusammengefasst. Kapitel 3 stellt die Charakteristika forschungsintensiver Industrien am Beispiel der Mikrosystemtechnik heraus und liefert die Begründung, weshalb sich diese für die empirische Untersuchung des Clusterphänomens besonders eignet. Nach einer allgemeinen Abgrenzung forschungsintensiver Industrien in Kapitel 3.1 wird dazu in Kapitel 3.2 die Mikrosystemtechnik in ihrer Funktion als Querschnittstechnologie näher vorstellt. Mit Kapitel 4 beginnt der empirische Teil der Arbeit. In Kapitel 4.1 wird das Forschungsvorhaben in den Rahmen der Evaluationsforschung eingeordnet und durch Definition von Analyseebene und Analyseeinheiten sowie der Grundgesamtheit für die empirische Untersuchung detaillierter beschrieben. In Kapitel 4.2 werden dann die Grundlagen der Modellierung von Strukturgleichungsmodellen vorgestellt, auf deren Basis in Kapitel 4.3 die Auswahl des statistischen Verfahrens zur Datenauswertung begründet wird. Die in Kapitel 4.4 vorgestellten Gütekriterien für Strukturgleichungsmodelle sind insbesondere aufgrund des quasi-experimentellen Forschungsdesigns und des durchzuführenden Gruppenvergleichs von großer Relevanz für die vorliegende Arbeit. Die angewendeten statistischen Methoden des Gruppenvergleichs werden in Kapitel 4.5 ausführlich der vorgestellt. Mit Dokumentation der Konstruktoperationalisierungen in Kapitel 4.6 sowie der Beschreibung der Vorgehensweise für die Durchführung der Datenerhebung in Kapitel 4.7 wird der empirische Teil der Arbeit abgeschlossen. In der Vorstellung der empirischen Ergebnisse in Kapitel 5 werden zunächst die deskriptiven Daten zusammengefasst (Kapitel 5.1), welche dann durch die Ergebnisse der Prüfung der Messmodelle (Kapitel 5.2) sowie des Strukturmodells (Kapitel 5.3) ergänzt werden. Kapitel 6 schließt die Arbeit durch die Beantwortung der eingangs aufgeworfenen Forschungsfragen (Kapitel 6.1), eine kritische Würdigung der Vorgehensweise (Kapitel 6.2) und der Ableitung von Implikationen für die Akteure von Wissenschaft, Wirtschaft und Politik (Kapitel 6.3) sowie für weiterführende Forschungsarbeiten (Kapitel 6.4). Die Arbeit endet mit Zusammenfassung und