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Introduction

This volume collects the contributions of some of the leading experts in
PDE who gave courses in the two intensive research periods I organized
at the Centro De Giorgi of Scuola Normale Superiore at Pisa and at the
University of Parma, in September 2009 and in the Spring of 2010, re-
spectively. The speakers kindly agreed to give courses whose aims were
both to review the established theory and to present the latest research de-
velopments; the notes included here summarize and extend the content of
the lectures given in some of the courses offered by the schools. Specif-
ically, the book contains three different contributions: the first one, in
order of presentation, is by Ernst Kuwert & Reiner Schätzle, the second
by Tristan Rivière, the third and final one by Bruno De Maria & Nicola
Fusco. The first two parts are of expository character, and summarize
some recent results obtained by the authors, after giving a rather general
and comprehensive introduction to the subject. The third one contains
some new results together with an up-to-dated presentation of the setting
of problems dealt with.
I hereby take the opportunity to acknowledge the support of the Euro-

pean Research Council via the ERC Grant 207573 “Vectorial problems”
and to thank the colleagues who were also responsible of the organization
of the intensive periods, and, amongst them, especially Frank Duzaar and
Juha Kinnunen.
The volume starts with the beautiful lecture notes, simply titled “The

Willmore functional”, by Ernst Kuwert & Reiner Schätzle. They give
a very comprehensive introduction to the basic analytic aspects of the
analysis of Willmore surfaces, i.e. the critical points of the Willmore
functional, smoothly taking the reader from the basic facts to some of
the most updated current research issues. After recalling the starting def-
initions and introducing a number of related tools, such as for instance
monotonicity formulas, the authors present a careful analysis of basic as-
pects of the Willmore flow (the gradient flow associated to the Willmore
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functional) such as estimates on the maximal existence time interval and
then the blow-up analysis of singularities at the time of their formation;
asymptotic convergence properties are considered and studied as well.
The authors then proceed in the analysis of the conformal parametriza-
tion properties of surfaces; it is here remarkable to note how Kuwert &
Schätzle succeed in giving a smooth, clear and self-contained of some
certainly not easy pieces of work, as for instance the study of asymptotic
properties of the classical conformal parametrization of Huber made by
Müller & S̆verák a few years ago. Further topics treated in the notes are
concerned with the removability of point singularities and applications
to global existence of the Willmore flow of embedded surfaces, that the
authors present in connection with the results of Robert Bryant; further
connections emerge here with recent work of Rivière, partially related
to the content of the subsequent chapter of this book. Finally, the au-
thors give proofs of basic theorems in the variational analysis ofWillmore
functional such as those concerning compactness via the Moebius group
quotients, and minimization asymptotic problems in classes of surfaces
with prescribed genus.
In his “The role of conservation laws in the analysis of conformally

invariant problems”, Tristan Rivière gives a very comprehensive and up-
dated presentation of regularity techniques aimed at treating conformally
invariant variational problems. This is a longstanding and traditional
topic in the modern Calculus of Variations. Rivière reviews a number of
basic relevant techniques – as for instance compensated compactness and
integrability by compensation – and then proceeds to explain the use of
conservation laws in the regularity analysis of certain systems with crit-
ical growth. Finally, he explains his proof of the famous Hildebrandt’s
conjecture. This states the Hölder continuity of energy critical points of
conformally invariant quadratic growth functionals. Rivière’s proof is
based on the new observation that the regularity of this problem can be
treated by analyzing certain systems with antisymmetric potential; in turn
Rivière’s analysis identifies the central role of antisymmetry of potentials
in allowing for deriving conservation laws when treating the regularity
of systems with critical growth right hand side. This new and ground-
breaking approach is robust enough to allow for many other applications
to conformally invariant problems and in Geometric Analysis. In the last
part of his notes, yet a new and surprising approach is described: the dis-
covery of the robustness of the traditional ODE method of the variation
of constants in the setting of Schrödinger systems with anti-symmetric
potentials. Indeed, a new formulation of this approach is proposed and
shown to be an effective tool when dealing with the regularity of more
general critical growth right hand side systems.
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De Maria & Fusco present a contribution titled “Regularity proper-
ties of equilibrium configurations of epitaxially strained elastic films”
which is devoted to the mathematical study of the morphological insta-
bilities of interfaces generated by the competition between elastic energy
and surface tension, the so-called stress driven rearrangement instabili-
ties (SDRI) of surfaces and interfaces in solids. Such a topic has been the
focus of a rapidly growing interest of the applied and computational com-
munities, also in view of its several important technological applications.
Besides this, their paper can be also seen as a fine contribution to the
regularity theory of the so-called free-discontinuity problems. Morpho-
logical instabilities occur, for instance, in the hetero-epitaxial growth of
thin films for systems with a lattice mismatch between film and substrate.
When the film is grown on a flat substrate, its profile remains flat until a
critical value of the thickness is reached, after which the free surface de-
velops corrugations, material clusters, and, possibly, cusp singularities.
This is commonly referred to as the Asaro-Grinfeld-Tiller (AGT) insta-
bility, after the name of the scientists who started such theoretical inves-
tigations. Several numerical and theoretical studies have been carried out
to study quantitative and qualitative properties of equilibrium configura-
tions of strained epitaxial films. Although very insightful, most of these
works lack rigorous mathematical content. Eventually, the foundations
of a rigorous mathematical treatment have been given in works by Grin-
feld (Soviet Physics Doklady, 1986), Bonnetier & Chambolle (SIAM J.
Appl. Math., 2002), and more recently in work by Fonseca, Fusco, Leoni
and Morini (ARMA 2007), who developed a complete regularity theory
for a variant of the Bonnetier-Chambolle functional, modeling the case
of an infinitely thick elastic substrate. Following the path set by Fonseca,
Fusco, Leoni andMorini, DeMaria & Fusco extend all these results to the
functional originally considered by Bonnetier & Chambolle, which deals
with the case of a rigid substrate. The main technical achievement is the
rigorous validation of zero contact angle condition. The proof of this fact
turns out to be considerably more difficult than in the case considered
by Fonseca, Fusco, Leoni and Morini, since the presence of a Dirich-
let condition at the interface between film and substrate poses non-trivial
additional difficulties. The regularity results established by De Maria &
Fusco presented here have been in fact used in several subsequent papers.
Parma, October 2011

Giuseppe Mingione
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Tübingen.



2 Ernst Kuwert and Reiner Schätzle

5.3 Higher regularity for point singularities . . . . . 77
5.4 Applications . . . . . . . . . . . . . . . . . . . 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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1 Introduction to Geometry
1.1 Introduction

For an immersed closed surface f : � → R
n the Willmore functional

is defined by

W( f ) = 1

4

∫
�

| �H|2 dμg.

Here g = f ∗geuc denotes the pull-back metric of the Euclidean metric
under f , that is in local coordinates

gi j := 〈∂i f, ∂ j f 〉.
Moreover, g = det(gi j ), (gi j ) = (gi j )−1 and for the induced area mea-
sure

μ f = μg = √g L2.
The second fundamental form of f is the normal projection of the sec-
ond derivatives of f

Ai j := (∂i j f )
⊥.

We define the mean curvature vector and the tracefree second fundamen-
tal form by

�H = gi j Ai j and A0i j = Ai j − 12 �Hgi j .
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The Gauß curvature can be written by the Gauß equations, see [dC, Sec-
tion 6, Proposition 3.1], as

K = 〈A(e1, e1), A(e2, e2)〉 − 〈A(e1, e2), A(e1, e2)〉, (1.1.1)

and combining with the inequality of geometric and arithmetic mean

|K | ≤ |A|2/2. (1.1.2)

In any orthonormal basis e1, e2 of the tangent space, we see

�H = A(e1, e1)+ A(e2, e2),

|A|2 = |A(e1, e1)|2 + |A(e1, e2)|2 + |A(e2, e1)|2 + |A(e2, e2)|2.
We calculate

| �H|2 = |A(e1, e1)|2 + 2〈A(e1, e1), A(e2, e2)〉 + |A(e2, e2)|2
= |A|2 + 2(〈A(e1, e1), A(e2, e2)〉 − 〈A(e1, e2), A(e1, e2)〉), (1.1.3)

hence by (1.1.1)
| �H|2 = |A|2 + 2K . (1.1.4)

Likewise

1

2
|A0|2 =

∣∣∣ A(e1, e1)− A(e2, e2)

2

∣∣∣2 + |A(e1, e2)|2
= 1

4
|A(e1, e1)|2 + 14 |A(e2, e2)|

2 + 1
2
|A(e1, e2)|2

− 1
2

(
〈A(e1, e1), A(e2, e2)〉 − 〈A(e1, e2), A(e1, e2)〉

)
= 1

4
|A|2 − 1

2

(
〈A(e1, e1), A(e2, e2)〉 − 〈A(e1, e2), A(e1, e2)〉

)
and using (1.1.3)

1

2
|A0|2 = 1

4
| �H|2−〈A(e1, e1), A(e2, e2)〉+〈A(e1, e2), A(e1, e2)〉. (1.1.5)

Again by (1.1.1), we obtain

1

4
| �H|2 − K = 1

2
|A0|2 (1.1.6)

and combining with (1.1.4)

|A|2 = 2|A0|2 + 2K . (1.1.7)
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For a closed surface � the integral over the Gauß curvature is given by
the Gauß-Bonnet theorem as∫

�

K dμg = 2π(�), (1.1.8)

where χ(�) denotes the Euler characteristic of �. This yields with
(1.1.4) and (1.1.6)

W( f ) = 1

4

∫
�

|A|2 dμg+πχ(�) = 1

2

∫
�

|A◦|2 dμg+2πχ(�). (1.1.9)

We finish this introduction establishing a lower bound in codimension
one.

Proposition 1.1.1 ([Wil65]). For any embedding f : � → R
3 of a

closed surface �, we have

W( f ) ≥ 4π
and equality implies that f parametrises a round sphere.

Proof. We consider � ⊆ R
3. Let ν : � → S2 be the unique smooth

outer normal at �. For any unit vector ν0, we choose x0 ∈ � with

〈x0, ν0〉 := max
x∈�
〈x, ν0〉

and see
� ⊆ {y ∈ R

3 | 〈y − x0, ν0〉 ≤ 0 }.
Therefore {ν0}⊥ is a supporting hyperplane of � at x0 and

ν(x0) = ν0 and K (x0) ≥ 0.
As ν0 ∈ S2 was arbitrary, we get

ν(K ≥ 0) = S2. (1.1.10)

We define the scalar second fundamental form

hi j = 〈Ai j , ν〉 = 〈∂i j f, ν〉.
Clearly, the Gauß curvature is the determinant

K = detg(hi j ).
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As ∂ f ⊥ ν, we get
hi j = −〈∂iν, ∂ j f 〉.

Considering gi j = δi j at some point, we get that ∂1 f, ∂2 f, ν is an
orthonormal basis of R

3 and observing ∂ν ⊥ ν, as |ν| = 1,
∂iν = −hi1∂1 f − hi2∂2 f.

We calculate the Jacobian

(Jgν)
2 = det(〈∂iν, ∂ jν〉) = det(hi j )2 = K 2,

hence
Jgν = |K |.

By (1.1.6), (1.1.10) and the area formula, we get

W(�) ≥
∫

[K>0]
K dμg =

∫
[K≥0]

Jgν dμg ≥ H2(ν(K ≥ 0)) = H2(S2) = 4π,

in particular [K > 0] �= ∅. In case of equality, we see using (1.1.10)

0 =
∫

[K>0]

(
1

4
| �H|2 − K

)
dμg =

∫
[K>0]

1

2
|A0|2 dμg,

hence A0 ≡ 0 in [K > 0]. By a theorem of Codazzi, f parametrises
in any connected component 	 of [K > 0] a piece of a round sphere
∂BR(a), in particular K ≡ 1/R2 is constant in 	. Therefore 	 is
closed, hence 	 = [K > 0] = � and A0 ≡ 0 on �, as � is connected
and [K > 0] �= ∅. Then f : � → ∂BR(a) is a local diffeomorphism,

hence a covering map, and, as ∂BR(a) is simply connected, f : � ≈−→
∂BR(a) is a diffeomorphism.

1.2 Conformal invariance

Clearly, the Willmore functional is invariant under isometries. Oberserv-
ing for λ > 0

�Hλ f = λ−1 �H and μλ f = λ2μ f ,

we see
W(λ f ) =W( f ),

and the Willmore functional is also invaraint under homotheties.
More general the Willmore functional is invariant under conformal

transformations. We start with the following pointwise invariance.
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Proposition 1.2.1 ([Ch74]). Let M be a n-dimensional manifold with
two conformal metrics ḡ = e2ug and � ⊆ M be a m-dimensional
submanifold. Then the second fundamental forms A and Ā of � with
respect to the ambient metrics g and ḡ satisfy

Āi j − Ai j = −gi j grad⊥g u (1.2.1)

in local charts on �, where gradgu
k = gkl∂lu denotes the gradient of

u with respect to g and .⊥ denotes the component normal to � with
respect to either g or ḡ. In particular

Ā0i j = A0i j (1.2.2)

for the tracefree second fundamental forms and for a surface � that is
m = 2

| Ā0|2ḡ μḡ = |A0|2g μg. (1.2.3)

First we compute the difference of Christoffel symbols for conformal
metrics.

Proposition 1.2.2. Let M be a n-dimensional manifold with two con-
formal metrics ḡ = e2ug. The difference of the Christoffel symbols in
local coordinates is a tensor and is given by

T k
i j := �̄k

i j − �k
i j = δki ∂ j u + δkj∂i u − gi j g

kl∂lu (1.2.4)

and in conformal coordinate gi j = e2vδi j

T 111 = ∂1u, T 112 = T 121 = ∂2u, T 122 = −∂1u,
T 211 = −∂2u, T 212 = T 221 = ∂1u, T 222 = ∂2u.

(1.2.5)

Proof. We calculate

2�̄k
i j = ḡkl(∂i ḡ jl + ∂ j ḡli − ∂l ḡi j )

= gkl(∂i g jl + ∂ j gli − ∂l gi j )

+ e−2ugkl(g jl∂i e2u + gli∂ j e
2u − gi j∂le

2u)

= 2�k
i j + 2gkl(g jl∂i u + gli∂ j u − gi j∂lu)

= 2�k
i j + 2(δkj∂i u + δki ∂ j u − gklgi j∂lu),

which is (1.2.4), and (1.2.5) follows easily by direct evaluation.
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Proof of Proposition 1.2.1. Let �k
i j and �̄

k
i j denote the Christoffel sym-

bols of g and ḡ and put T k
i j := �̄k

i j−�k
i j which is a tensor. We calculate

the covariant derivatives of a vectorfield X = Xk∂k on M as

∇ ḡ
i X

k = ∇g
i X

k + T k
il X

l .

We may consider � = Bm1 (0) × {0} ⊆ Bn1 (0) = M and gi j (0) = δi j .
Then ∂1, . . . , ∂m are tangential to � and ∂m+1, . . . , ∂n form a basis of
T⊥0 �. Choosing X = ∂ j , i, j = 1, . . . ,m, we get for the normal projec-
tions of the covariant derivatives which are the second fundamental form

Āi j − Ai j = ∇ ḡ,⊥
i ∂ j −∇g,⊥

i ∂ j = T k
i j∂
⊥
k =

n∑
k=m+1

T k
i j∂k . (1.2.6)

Using (1.2.4) and observing that i, j = 1, . . . ,m, k = m + 1, . . . , n
yields gik(0) = g jk(0) = 0, as grs(0) = δrs , hence

T k
i j = −gi j gkl∂lu in 0.

Plugging into (1.2.6), we obtain

Āi j − Ai j=−
n∑

k=m+1
gi j g

kl∂lu∂k = −gi j gkl∂lu∂⊥k = −gi jgrad⊥g u in 0.

This equation is tensorial, and we obtain (1.2.1) on �. As the difference
is a multiple of either metric g or ḡ, the tracefree parts coincide which is
(1.2.2). Finally

| Ā0|2ḡ
√
ḡ = ḡik ḡ jl ḡ( Ā0i j , Ā

0
kl)

√
ḡ

= e−4ugikg jle2ug(A0i j , A
0
kl)

√
det(e2ugi j ) = |A0|2g

√
g

which yields (1.2.3).

We consider an immersion f : �→ 	 of a closed surface into an open

set 	 ⊆ Rn . Let � : 	 ≈−→ 	′ ⊆ R
n be a conformal diffeomorphism

with pull-back metric ḡ = �∗geuc = e2ugeuc. We calculate with (1.1.9)
and (1.2.3)

W(� ◦ f ) = 1

2

∫
�

|A0�◦ f |2 dμ�◦ f + 2πχ(�)

= 1

2

∫
�

|A0f |2ḡ dμḡ + 2πχ(�)

= 1

2

∫
�

|A0f |2 dμ f + 2πχ(�) =W( f ),

and theWillmore functional is invariant under conformal diffeomorphisms.
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Now we want to extend the definition of the Willmore functional from
Euclidean target to general n-dimensional manifold M with metric g,
see [Wei78]. We consider an immersion f : �→ M of a closed surface.
The Gauß equations (1.1.1) extend in M , see [dC, Section 6, Proposition
3.1], using the Riemann curvature tensors R� and RM of � and M to

〈A(e1, e1), A(e2, e2)〉 − 〈A(e1, e2), A(e1, e2)〉
= R�(e1, e2, e1, e2)− RM(e1, e2, e1, e2) = K� − K�

M ,

where K� is Gauß curvature of � and K�
M is the sectional curvature

of M with respect to the tangent space of �. Recalling (1.1.5), which
holds true in general M , we obtain

1

4
| �H|2 + K�

M =
1

2
|A0|2 + K�.

The integral over � with respect to the area measure μg of the first term
on the right hand side is a conformal invariant by Proposition 1.2.1, and
the integral over the second term is a topological invariant. This yields
the following definition and proposition.

Proposition 1.2.3. For a immersion f : �→ M of a closed surface �

into a n-dimensional manifolds M with metric g, we define the Willmore
functional

W( f ) =W( f, g) :=
∫
�

(
1

4
| �H|2 + K�

M

)
dμg. (1.2.7)

The Willmore functional is invariant under conformal changes of the met-
ric, that is

W( f, ḡ) =W( f )

for any conformal metric ḡ = e2ug.

For the special case of a sphere M = Sn with canonical metric, we
have K�

Sn ≡ 1 and get for f : �→ Sn that

W( f ) = 1

4

∫
�

| �H|2 dμg + Area( f ). (1.2.8)
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1.3 The Euler Lagrange equation

Critical points of the Willmore functional are called Willmore immer-
sions or Willmore surfaces. Here we derive the Euler Lagrange equation
for the Willmore functional.
We consider a smooth one-parameter family of immersions ft : �→

R
n with ∂t ft,|t=0 = V normal along f . We get in local coordinates

gt,i j = 〈∂i ft , ∂ j ft〉

and

∂t gi j = 〈∂i f, ∂ j V 〉 + 〈∂ j f, ∂i V 〉 = −2〈Ai j , V 〉, (1.3.1)

as ∂ f ⊥ V and A = ∂2 f ⊥. Then as gi j g jk = δik

∂t g
i j = −gik∂t gkl gl j = 2gikg jl〈Akl, V 〉 (1.3.2)

and

∂t g=∂t det(gi jt=0g jk)g= tr(gi j∂t g jk)g=−2gi j 〈Ai j , V 〉g=−2〈 �H, V 〉g,

hence

∂tμg = ∂t
√
gL2 = −〈 �H, V 〉√gL2 = −〈 �H, V 〉μg. (1.3.3)

Next we write ∇i for the covariant derivative, ∇⊥i for its normal projec-
tion and ∂⊥t for the normal projection of the time derivative. We recall
the Weingarten equations

Ai j = (∂i j f )
⊥ = ∂i j f − 〈∂i j f, ∂k f 〉gkl∂l f

= ∂i j f − �k
i j∂k f = ∇i∇ j f.

We calculate

∂⊥t Ai j = (∂i j V )
⊥ − 〈∂i j f, ∂k f 〉gkl∂⊥t ∂l f

= (∂i j V − �k
i j∂kV )

⊥ = (∇i∇ j V )
⊥

= ∇⊥i ∇⊥j V +∇⊥i
(
〈∂ j V, ∂k f 〉gkl∂l f

)
= ∇⊥i ∇⊥j V − 〈A jk, V 〉gkl∇⊥i ∂l f
= ∇⊥i ∇⊥j V − 〈A jk, V 〉gkl Ail

(1.3.4)
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and

∂⊥t �H = ∂⊥t (g
i j Ai j ) = gi j

(
∇⊥i ∇⊥j V − 〈A jk, V 〉gkl Ail

)
+ 2gikg jl〈Akl, V 〉Ai j
= 
⊥V + gikg jl〈Ai j , V 〉Akl
= 
⊥V + gikg jl

〈
A0i j +

1

2
�Hgi j , V

〉(
A0kl +

1

2
�Hgkl

)
= 
⊥V + gikg jl〈A0i j , V 〉A0kl
+ 1
2
gikg jl gi j A

0
kl〈 �H, V 〉 +

1

2
gikg jl gkl〈A0i j , V 〉 �H

+ 1
4
gikg jl gi j gkl〈 �H, V 〉 �H

= 
⊥V + gikg jl〈A0i j , V 〉A0kl +
1

2
〈 �H, V 〉 �H,

where 
⊥ denotes the Laplacian in the normal bundle. Combining we
get

∂t

(
| �H|2μg

)
= 2〈∂⊥t �H, �H〉μg + | �H|2∂tμg

=
(
2〈
⊥V, �H〉 + 2gikg jl〈A0i j , �H〉〈A0kl, V 〉
+ 〈 �H, V 〉| �H|2 − | �H|2〈 �H, V 〉

)
μg

= 2
(
〈
⊥V, �H〉 + gikg jl〈A0i j , �H〉〈A0kl, V 〉

)
μg.

(1.3.5)

Integrating yields

d

dt
W( ft) = 1

2

∫
�

(
〈
⊥V, �H〉 + gikg jl〈A0i j , �H〉〈A0kl, V 〉

)
dμg

= 1

2

∫
�

〈
⊥ �H+ gikg jl〈A0i j , �H〉A0kl, V 〉 dμg.

(1.3.6)

We abbreviate for a normal field φ

Q(A0)φ := gikg jl〈A0i j , φ〉A0kl (1.3.7)

and

δW( f ) := 1

2

(

⊥ �H+ Q(A0) �H

)
. (1.3.8)
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Now we consider a general smooth one-parameter family of immersions
ft : �→ R

n with ∂t ft = Vt ∈ R
n . We decompose

Vt = Nt + d f.ξt
in Nt normal along f and d f.ξt tangential along f and ξt ∈ T�. We
solve the ordinary differential equation

φ0 = id� and ∂tφt = −ξt(φt).
Clearly, φt : � ≈−→ � is a one-parameter family of diffeomorphisms.
We put f̃t = ft ◦ φt and see

∂t f̃t = (∂t ft) ◦ φt + d ft .∂φt = Vt(φt)− d ft .ξt(φt) = Nt(φt)

which is normal along f . By parameter invariance of the Willmore func-
tional and (1.3.6), we get

d

dt
W( ft) = d

dt
W( f̃t) =

∫
�

〈δW( f ), N 〉 dμg =
∫
�

〈δW( f ), ∂t f 〉 dμg,

since δW( f ) is normal along f . We have proved the following proposi-
tion.

Proposition 1.3.1. For a smooth one-parameter family of immersions
ft : � → R

n the first variation of the Willmore functional is given
by

d

dt
W( ft) =

∫
�

〈δW( f ), ∂t f 〉 dμg. (1.3.9)

f is called a Willmore immersion, if this vanishes, hence if

δW( f ) = 1

2

(

⊥ �H+ Q(A0) �H

)
= 0 on �. (1.3.10)

In case of an immersion f : � → Sn into a sphere, we obtain the
following proposition.

Proposition 1.3.2. For an immersion f : � → Sn ⊆ R
n+1 into the

sphere, we see for the second fundamental forms A f,Rn+1 respectively
A f,Sn as immersions into R

n+1 respectively Sn

A f,Rn+1 = A f,Sn − f g, �H f,Rn+1 = �H f,Sn − 2 f, A0
f,Rn+1 = A0f,Sn ,


Rn+1,⊥
g

�H f,Rn+1 + Q(A0
f,Rn+1) �H f,Rn+1 = 
Sn ,⊥

g
�H f,Sn + Q(A0f,Sn ) �H f,Sn .

(1.3.11)


