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Preface

My intention in writing this book was to write a narrative of the key mission
architecture elements comprising NASA’s plan for returning astronauts to the
Moon. Although this book is by no means an exhaustive account of the many steps
required to enable a manned lunar mission, my goal was to present as much detail
as possible. To that end I relied extensively on a vast number of documents ranging
from Power-point presentations, briefings, plans, press conferences, and technical
articles.

Only a generation ago, the United States abandoned its own pioneering space
exploration program. Even as the Apollo 17 astronauts returned from the Moon in
1972, the Nixon Administration was closing the hatch on missions beyond low Earth
orbit. The Saturn V fleet, together with all the technological wonders developed by
NASA to fly astronauts to the Moon, were mothballed. Since the end of Apollo,
thousands of scientific papers and popular articles have been written on the topic of
returning humans to the Moon. But how will we actually return? The book you are
now holding answers that question and is written for those who wonder how NASA’s
new fleet of Launch Vehicles are developing, what the new class of astronauts will do
on the surface of the Moon, and how mission profiles are designed.

As I write these words, a Presidential election is looming and it would be remiss
not to address the historic choices faced by the two candidates. Whether driven by
political tactics or strategic statesmanship, the space policy decisions made by either
Senator Barack Obama or Senator John McCain may well determine the direction the
United States takes in its second half-century of manned spaceflight. Whereas under
the Bush Administration manned spaceflight has been ascendant, comments made by
Obama, such as those below, suggest job losses in the human spaceflight business to be
almost a certainty.

“I think it is important for us to inspire through the space program, but also
have the practical sense of what investments deliver the most scientific and
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technological spinoffs, and not just to feel that the human space exploration—
actually sending bodies into space—is always the best investment.”

Senator Barack Obama speaking during a call-in interview with

the Editorial Board of the Houston Chronicle

In contrast to Obama’s position on space, McCain’s space policy favors a return to the
Moon and preparations for manned missions to Mars, a policy reflected on his website
which carries an artist’s rendering of the Orion Crew Exploration Vehicle. For seven
years, between 1997 and 2005, McCain was Chairman of the Senate Commerce
Committee, which oversees space and commercial aviation, a position that provided
him with experience critical to shaping NASA’s future. As a strong supporter of
NASA and the space program, McCain is proud to have sponsored legislation
authorizing funding consistent with the President’s VSE and he believes support
for a continued American presence in space is crucial to re-establishing the country’s
pre-eminence over the Russians in space technology.

While some may worry about the potential ramifications of a possible Democratic
Administration for manned spaceflight, the reality is that no matter who wins the
White House in November 2008, both John McCain and Barack Obama will be long
gone, or well into a second term, before any policy changes can be implemented that
could seriously affect the Constellation Program. With fuel prices spiraling out of
control, an economy in recession, and a commitment to overhaul the education
system, the newly elected President will need to focus his attention on more pressing
concerns.

The Constellation Program, which is the focus of much of this book, is more than
just a proposal. It represents nothing less than the next logical phase in the evolution
of space exploration and the first step to creating a space-faring civilization. The
Vision for Space Exploration, announced by President Bush in January 2004, is a
vision that plans to send astronauts not only to the Moon but also onward to Mars
and beyond. It is a vision whose scope is vast. Far from being speculative, the plan
described in this book is being realized as you read these words.

Although the Constellation Program has its critics, NASA detractors would be
wise to remember that the agency invented the American manned space program. The
agency put humans on the Moon, built the International Space Station, and regularly
sends sophisticated probes billions of kilometers to Mars, Titan, and other moons and
planets with unerring precision and accuracy. All these accomplishments are achieved
under intense public scrutiny. Paradoxically, the successes of contemporary probes
such as the Mars Exploration Rover and the joint NASA-ESA Cassini-Huygens
Saturn missions have prompted some of the white suits to argue a case for a strictly
robotic paradigm which, they claim, is cheaper and holds more promise than human
exploration. In reality, nothing could be further from the truth since, although the
aforementioned missions represent a tour de force of exploration, robots have many
more limitations than humans. A manned lunar outpost is smart not just because the
Moon is close but because it offers a unique location from which to parameterize
human ecology on the high frontier, a goal that could not be achieved by simply
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sending robots. Furthermore, the Moon is the stepping stone to an understanding of
the practicalities of human survival for ever-longer periods in artificial ecosystems.
Such goals can only be achieved by putting humans on the lunar surface for an
extended timescale. Thanks to its cadre of superb engineers and can-do attitude
NASA will take us to the Moon again. Here’s how the agency will do it.
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