Lunar Outpost

The Challenges of Establishing a Human Settlement on the Moon

Lunar Outpost

The Challenges of Establishing a Human Settlement on the Moon

Dr Erik Seedhouse, F.B.I.S., As.M.A. Milton Ontario Canada

SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.Sc., B.Sc., Ph.D.

ISBN 978-0-387-09746-6 Springer Berlin Heidelberg New York

Springer is part of Springer-Science + Business Media (springer.com)

Library of Congress Control Number: 2008934751

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

© Praxis Publishing Ltd, Chichester, UK, 2009 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Jim Wilkie Project management: Originator Publishing Services, Gt Yarmouth, Norfolk, UK

Printed on acid-free paper

Contents

Pre	face	xiii
Ack	nowledgments	xvii
Abo	out the author	xix
List	of figures	xxi
List	of tables	xxv
List	of abbreviations and acronyms	xxvii
1	Vision for Space Exploration	1
	Pre-VSE Space Exploration Initiatives	1
	The Vision for Space Exploration plan	2
	The first goal: exploration activities in low Earth orbit	2
	The second goal: space exploration beyond low Earth orbit The third goal: space transportation capabilities supporting ex-	3
	ploration	5
	Exploration Systems Architecture Study charter	6
	Exploration Systems Architecture Study ground rules and assump-	
	tions	6
	Exploration Systems Architecture Study tasks	7
	Mission architecture overview	7
	Design Reference Missions overview	7
	The Constellation Program	13
	Rationale for returning to the Moon	19
	Science	20
	Technology	20
	Exploration and exploitation	20
	References	22

vi Contents

2	Racing to the Moon
	China's lunar ambitions
	China's lunar history
	Technology
	Japan's lunar intentions
	Japan's lunar architecture
	Russia's manned Moon program
	Soyuz K
	Kliper
	Advanced Crew Transportation System
	Mission architectures
	Taking Europe to the Moon
	Concurrent Design Facility lunar mission
	Manned mission to the Moon
	Reference
3	Next-generation launch vehicles
	Overview of the launch vehicle selection process
	Selecting the Crew Launch Vehicle 41
	Selecting the Cargo Launch Vehicle
	Ares I and Ares V
	NASA's rationale for choosing Shuttle-derived launch vehicles . 44
	ESAS considerations
	Designing Ares
	Ares I
	Design history overview
	Design endorsement
	Ares I design evolution
	Role of the Constellation Architecture Requirements Document 51
	Ares I first-stage design and development progress 51
	Ares I avionics
	Ares I safety systems
	Ares I test flights
	Nominal mission profile
	First test flight: Ares I-X
	Ares I-X flight profile
	Development problems
	Thrust oscillation
	Ares I critics and supporters
	Propulsion for Ares I and Ares V
	Choosing a rocket engine
	J-2 history
	J-2X development 61
	J-2X concept of operations
	J-2X engineering

		Contents	vii
	Ares V		63
	Ares V overview		63
	Ares V Core Stage propulsion		63
	Ares V concept of operations		65
	Ares V development problems		65
	Ares V elements		66
	Earth Departure Stage		66
	Altair/Lunar Surface Access Module		66
	Altair design history		66
	Current Altair iteration		68
	Operational characteristics		68
	•		71
	Altair concept of operations		76
	Abort methods		
	Ares V progress		79
	Accelerating operational status		79
	References		80
4	Designing the Crew Exploration Vehicle		83
	Crew Exploration Vehicle contractor studies		85
	Andrews Space Inc. Crew Exploration Vehicle		85
	Draper Labs		86
	Lockheed Martin Corporation		86
	Northrop Grumman Corporation		87
	Orbital Science Corporation		88
	Schafer		88
	The Boeing Company		89
	Transformational Space		89
	Contractor studies outcome		90
	The CEV contract		91
	Defining and designing Orion		91
	The role of the Exploration Systems Architecture Study.		91
	Crew Exploration Vehicle design overview		91
	Generating vehicle concepts		93
	Orion trade studies		94
	Crew Module shape		94
	Aerodynamic stability		95
	Ballistic entry		96
	The design process		96
	Design considerations step by step		97
	Orion variants		98
	Block 1A and 1B		98
	Cargo Delivery Vehicle		98
	Baseline Block 2		99
	Block 3		100
	Design evolution of Orion.		100
	12001211 0 VOIULIOII OI OHOIL		100

viii Contents

	Orion systems and subsystems
	Orion Crew Exploration Vehicle
	Service Module
	Spacecraft adapter
	Launch Abort System
	Orion abort modes
	Risk assessment
	References
5	Lunar outpost 12
	Lunar environment
	Geography
	Geology
	Gravity
	Temperature
	Atmosphere
	Radiation
	Meteoroid
	Lunar dust
	Seismic activities
	Outpost location
	Lunar infrastructure
	Lunar Habitat concept
	Launch manifest
	Module layout
	Habitat surface power
	Lunar life support
	Human life support requirements
	Habitat atmosphere considerations
	Habitat temperature and humidity
	Energy expenditure
	ECLSS technology options
	Design of a physico-chemical/bioregenerative ECLSS 130
	Fire detection and suppression
	Expandable habitat structures
	Lunar communications and navigation capabilities
	Communication and navigation overview
	Concept of operations
	Descent and landing navigation capability
	Surface mobility navigation capability
	Radiometric time architecture
	Surface communication systems
	Surface wireless mesh networking
	Surface mobility systems
	Robotic rovers

Contents	ix

References 6 Astronaut selection and medical requirements Psychological impact of long-duration missions Psychosocial issues Psychological problems during space missions Crew selection criteria Medical selection of astronauts Crew compatibility Crew composition Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training	147
Psychological impact of long-duration missions Psychosocial issues Psychological problems during space missions Crew selection criteria Medical selection of astronauts Crew compatibility. Crew composition Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training.	148
Psychological impact of long-duration missions Psychosocial issues Psychological problems during space missions Crew selection criteria Medical selection of astronauts Crew compatibility. Crew composition Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training.	151
Psychosocial issues. Psychological problems during space missions Crew selection criteria Medical selection of astronauts Crew compatibility. Crew composition Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training. Psychological training.	
Psychological problems during space missions Crew selection criteria Medical selection of astronauts Crew compatibility. Crew composition Leadership. Crew training. Basic training Lunar training Emergency training Virtual Environment Generator training. Psychological training.	
Crew selection criteria Medical selection of astronauts Crew compatibility. Crew composition Leadership. Crew training. Basic training. Lunar training Emergency training Virtual Environment Generator training. Psychological training.	
Medical selection of astronauts Crew compatibility. Crew composition Leadership. Crew training. Basic training. Lunar training Emergency training Virtual Environment Generator training. Psychological training.	
Crew compatibility. Crew composition Leadership. Crew training. Basic training. Lunar training Emergency training Virtual Environment Generator training. Psychological training.	
Crew composition Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training	
Leadership Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training	
Crew training Basic training Lunar training Emergency training Virtual Environment Generator training Psychological training	
Basic training	
Lunar training	
Emergency training	
Virtual Environment Generator training	
Psychological training	
M - 1: - 1	
Medical care	
Radiation.	
Human behavior and performance	
Deconditioning	
Countermeasures	
Medical intervention	
Crew medical training	
Telemedicine	
References	180
7 From launch to landing	183
Mission architecture	183
Lunar mission modes	
Evolution of the current lunar architecture	184
Space Exploration Initiative	
Office for Exploration	185
First Lunar Outpost study	185
Human Lunar Return study	186
Decadel Planning Team	186
Exploration Systems Mission Directorate	186
Lunar architecture	187
Robotic precursor missions	
Earth-to-orbit transportation	
Mission mode evaluation, Analysis Cycle 1	
Mission mode evaluation, Analysis Cycle 2	
Mission mode evaluation, Analysis Cycle 3	
Deployment architecture and strategy	

x Contents

	Outpost architecture	207
	Outpost deployment strategy	207
	Lunar architecture defined	207
	Surface architecture	208
	Risk and reliability assessment	208
	ESAS architecture risk and reliability assessment	208
	Overall risk assessment from launch to landing	211
	Launch Vehicle risk	211
	CEV, SM, and LSAM risk	211
	Rendezvous and docking hazards	212
	Lunar surface stay risk	212
	References	212
8	Alternative mission architectures	215
	The Moon as a proving ground: VSE vs. the alternative vision	215
	Human health and performance	216
	Life support systems	216
	Mobility systems	216
	System reliability	216
	Dust mitigation	217
	Transportation systems	217
	Autonomous operations	217
	Reinventing Apollo	217
	The inevitability of VSE	218
	DIRECT - 2.0 discorr	219
	DIRECT v2.0 drivers	220
	DIRECT history	220
	Jupiter Launch System	221 224
	Integration and utilization of Shuttle-derived technology	224
	Integration and utilization of existing technology The RS-68 rocket engine	223
	Jupiter Launch System Upper Stage	227
	Jupiter Launch System vehicle launch infrastructure	229
	Safety analysis	230
	Transitioning from Shuttle to Jupiter	231
	DIRECT's lunar architecture	233
	ESAS architecture concerns	233
	Global access anytime return	233
	DIRECT architecture advantages	234
	Mission timetable	234
	Advantages and disadvantages of DIRECT	234
	Politics	235
	Response to DIRECT	236
	Pursuing Constellation	238
	References	238

Contents	X

9	Lunar exploration objectives	241
	Lunar Precursor and Robotic Program	243
	Extravehicular activities	244
	Apollo extravehicular activity suits	245
	Constellation Space Suit System	245
	Suit design considerations	246
	Mark III and REI space suits	247
	Testing the H-Suit and REI Suits	247
	Bio-Suit	247
	Science on the Moon	249
	Astronomy and astrophysics	249
	Heliophysics	250
	Earth observation	250
	Geology	251
	Materials science	252
	Physiological adaptation	252
	In situ resource utilization	253
	ISRU systems and technologies	254
	Lunar regolith extraction	254
	Extracting water ice	254
	Developing construction materials	255
	Mining helium-3	256
	Oxygen production	258
	Factors to consider	258
	Oxygen production processes	259
	ISRU development and integration strategy	262
		262
	References	264
	Online references	204
10	· · · · · · · · · · · · · · · · · · ·	265
	Space Adventures Ltd	265
	Deep Space Exploration-Alpha	266
	The DSE spacecraft and the missions	267
	The Artemis Project	268
	Artemis reference mission	268
	Artemis mission architecture	269
	Artemis crew selection	270
	Bigelow Aerospace	271
Eni	ilogue	273
_	ossary	277
	•	
Ind	lex	285

Preface

My intention in writing this book was to write a narrative of the key mission architecture elements comprising NASA's plan for returning astronauts to the Moon. Although this book is by no means an exhaustive account of the many steps required to enable a manned lunar mission, my goal was to present as much detail as possible. To that end I relied extensively on a vast number of documents ranging from Power-point presentations, briefings, plans, press conferences, and technical articles.

Only a generation ago, the United States abandoned its own pioneering space exploration program. Even as the Apollo 17 astronauts returned from the Moon in 1972, the Nixon Administration was closing the hatch on missions beyond low Earth orbit. The Saturn V fleet, together with all the technological wonders developed by NASA to fly astronauts to the Moon, were mothballed. Since the end of Apollo, thousands of scientific papers and popular articles have been written on the topic of returning humans to the Moon. But how will we actually return? The book you are now holding answers that question and is written for those who wonder how NASA's new fleet of Launch Vehicles are developing, what the new class of astronauts will do on the surface of the Moon, and how mission profiles are designed.

As I write these words, a Presidential election is looming and it would be remiss not to address the historic choices faced by the two candidates. Whether driven by political tactics or strategic statesmanship, the space policy decisions made by either Senator Barack Obama or Senator John McCain may well determine the direction the United States takes in its second half-century of manned spaceflight. Whereas under the Bush Administration manned spaceflight has been ascendant, comments made by Obama, such as those below, suggest job losses in the human spaceflight business to be almost a certainty.

"I think it is important for us to inspire through the space program, but also have the practical sense of what investments deliver the most scientific and technological spinoffs, and not just to feel that the human space exploration—actually sending bodies into space—is always the best investment."

Senator Barack Obama speaking during a call-in interview with the Editorial Board of the *Houston Chronicle*

In contrast to Obama's position on space, McCain's space policy favors a return to the Moon and preparations for manned missions to Mars, a policy reflected on his website which carries an artist's rendering of the Orion Crew Exploration Vehicle. For seven years, between 1997 and 2005, McCain was Chairman of the Senate Commerce Committee, which oversees space and commercial aviation, a position that provided him with experience critical to shaping NASA's future. As a strong supporter of NASA and the space program, McCain is proud to have sponsored legislation authorizing funding consistent with the President's VSE and he believes support for a continued American presence in space is crucial to re-establishing the country's pre-eminence over the Russians in space technology.

While some may worry about the potential ramifications of a possible Democratic Administration for manned spaceflight, the reality is that no matter who wins the White House in November 2008, both John McCain and Barack Obama will be long gone, or well into a second term, before any policy changes can be implemented that could seriously affect the Constellation Program. With fuel prices spiraling out of control, an economy in recession, and a commitment to overhaul the education system, the newly elected President will need to focus his attention on more pressing concerns.

The Constellation Program, which is the focus of much of this book, is more than just a proposal. It represents nothing less than the next logical phase in the evolution of space exploration and the first step to creating a space-faring civilization. The Vision for Space Exploration, announced by President Bush in January 2004, is a vision that plans to send astronauts not only to the Moon but also onward to Mars and beyond. It is a vision whose scope is vast. Far from being speculative, the plan described in this book is being realized as you read these words.

Although the Constellation Program has its critics, NASA detractors would be wise to remember that the agency invented the American manned space program. The agency put humans on the Moon, built the International Space Station, and regularly sends sophisticated probes billions of kilometers to Mars, Titan, and other moons and planets with unerring precision and accuracy. All these accomplishments are achieved under intense public scrutiny. Paradoxically, the successes of contemporary probes such as the Mars Exploration Rover and the joint NASA–ESA Cassini–Huygens Saturn missions have prompted some of the white suits to argue a case for a strictly robotic paradigm which, they claim, is cheaper and holds more promise than human exploration. In reality, nothing could be further from the truth since, although the aforementioned missions represent a *tour de force* of exploration, robots have many more limitations than humans. A manned lunar outpost is smart not just because the Moon is close but because it offers a unique location from which to parameterize human ecology on the high frontier, a goal that could not be achieved by simply

sending robots. Furthermore, the Moon is the stepping stone to an understanding of the practicalities of human survival for ever-longer periods in artificial ecosystems. Such goals can only be achieved by putting humans on the lunar surface for an extended timescale. Thanks to its cadre of superb engineers and can-do attitude NASA will take us to the Moon again. Here's how the agency will do it.

Acknowledgments

My first and greatest thanks go to my wife, Doina, for her patience and support during the writing of this book. Without Doina's exceptional grammatical talents and the endless hours she spent editing, this book could simply not have been written.

Once again, I am grateful to Clive Horwood of Praxis and the enthusiasm of the book's copy editor and typesetter, Neil Shuttlewood, is acknowledged. Likewise it has been a pleasure to work with my agent, Stephanne, and I look forward to the next book.

Along the path to writing this book, a unique group of colleagues and friends have supported my interest in manned spaceflight. My Ph.D. supervisors Professors David Grundy and Paul Enck constantly supported me in my research endeavors and have been instrumental in my being able to pursue a research career. Dr. Andrew Blaber kindly offered me a post-doctoral position at Simon Fraser University's Environmental Physiology Unit.

Finally, to those friends who read my first book and provided encouraging comments and to those friends who assured me they have the best intentions of reading my book: Julian Wigley, Tim Donovan, Gita Nand, Tania Meloni, Calvin Sandiford, Lee Williams, Tom Rodgers, Nancy Westrom, and Simba. Also, Dan Baouya—if all else fails, there is always Plan B!

Finally, thanks must go to our two cats, Mini-Mach and Jasper, and the constant welcome distraction they provided.

About the author

Erik Seedhouse is an aerospace scientist with ambitions to become an astronaut. He experienced his first taste of microgravity while working as a research subject during the European Space Agency's 22nd Parabolic Flight Campaign in 1995. He gained his Ph.D. in Physiology while working at the German Space Agency's Institute for Space Medicine in Cologne between 1996 and 1998 and recently worked as an astronaut training consultant for Bigelow Aerospace in Las Vegas. He is a Fellow of the British Interplanetary Society and a member of the Aerospace Medical Association. When not writing books about space Erik flies his Cessna, races Ironman and Ultraman triathlons, climbs mountains, and spends as much time as possible in Kona and on Hapuna Beach on the Big Island of Hawaii.

Erik lives with his wife and two cats on the Niagara Escarpment in Canada.

Figures

1.1	NASA's Crew Launch Vehicle, Ares I	4
1.2	NASA's Cargo Launch Vehicle, Ares V	5
1.3	Orion is the name of NASA's Crew Exploration Vehicle	color
1.4	Design Reference Mission showing how astronauts will be transported to and	
	from the ISS	8
1.5	Design Reference Mission showing how unpressurized cargo will be transported to and from the ISS	9
1.6	Design Reference Mission showing how pressurized cargo will be transported to and from the ISS	10
1.7	Design Reference Mission showing how astronauts will travel to the Moon with cargo	10
1.8	Design Reference Mission showing how cargo will be transported to the lunar surface	11
1.9	Design Reference Mission showing how astronauts will travel to the Moon for a	
	six-month outpost mission	12
1.10	NASA's Constellation logo	13
2.1	Launch of Shenzhou 6	25
2.2	Ouyang Ziyuan, chief scientist of China's lunar exploration program	26
2.3 2.4	Chang'e represents the first phase on China's Lunar Exploration Program The Kliper is a six-person spaceplane intended to replace the Soyuz and	26
	Progress crew and cargo vehicles	30
2.5	The Advanced Crew Transportation System	31
2.6	ESA's Ariane 5 Launch Vehicle	35
3.1	Launch Vehicle configurations evaluated by the Exploration Systems Architecture Study	42
3.2	The Cargo Launch Vehicle, Ares V, is a Shuttle-derived Launch Vehicle consisting of two five-segment Reusable Solid Rocket Boosters and an External	
	Tank	44
3.3	Ares I	45

xxii Figures

3.4	An exploded view of Ares V	46
3.5	Evolution of Ares V concepts	50
3.6	An exploded view of Ares I	53
3.7	Ares I Interstage	55
3.8	A J-2X engine mounted on the A-1 Test Stand at Stennis Space Center	60
3.9	Earth Departure Stage and Lunar Surface Access Module docked in low Earth	
	orbit	67
3.10	Artist rendering of Altair on the surface of the Moon	69
3.11	Altair concept of operations	74
4.1	Exploded view of Orion	84
4.2	Andrews Space Inc. mock-up of Crew Exploration Vehicle proposal	86
4.3	Cutaway of Lockheed Martin's lifting body proposal for the Crew Exploration	
	Vehicle	87
4.4	Artist's rendering of Orion landing with airbags deployed	100
4.5	The development of Orion's heat shield is being conducted at NASA's arc jet	
	facilities at Johnson Space Center	104
4.6	Orion capsule showing RCS system and propellant tanks	color
4. 7	Cut-away of Orion showing crew compartment	108
4.8	Artist's rendering of Orion's drogue chutes deployed	109
4.9	Artist's rendering of Orion's three parachutes deployed	109
4.10	Langley's Landing and Impact Research Facility	110
4.11	Orion's Service Module provides the astronauts with power thanks to two	
	deployable, single-axis gimbaling solar arrays	113
4.12	Orion's Launch Abort System	color
5.1	NASA researcher, Raj Kaul, examines a radiation "brick" of RFX1	129
5.2	Bigelow Aerospace's Genesis II inflatable habitat passes over the Baja	1.40
<i>5</i> 2	Peninsula	142
5.3 5.4	A TransHab module undergoing testing. Image courtesy: NASA NASA, the National Science Foundation and ILC Dover unveiled an	143
5.4	Antarctic-bound inflatable habitat on November 14, 2007	144
5.5	NASA's Recon Robots will be used to perform highly repetitive and long-	144
3.3	duration tasks	148
5.6	NASA's Mobile Lunar Transport	color
5.7	ATHLETE is capable of rolling over undulating terrain	color
6.1	The environment onboard a nuclear submarine imposes similar stresses to those	COIOI
0.1	experienced by long-duration space crews	153
6.2	Ernest Shackleton	color
6.3	Coronal mass ejections have the potential to inflict serious radiation injury	Color
	upon crewmembers embarked upon long-duration lunar missions	166
6.4	Lunar-bound crewmembers will be required to exercise between two and three	
	hours per day to offset the deleterious effects of reduced gravity	174
6.5	Diagnostic algorithm used to identify medical problems	180
6.6	Dr. Scott Dulchavsky views a surgical procedure being performed remotely by a	
	non-physician on the NASA Microgravity Research Facility	color
6.7	Telemedicine may require astronauts to use smart medical systems similar to the	
	one depicted in this photo	color
7.1	ESAS Initial reference Architecture	189
7.2	Mock-up of Crew Exploration Vehicle	color
7.3	Lunar orbit rendezvous mission architecture	191

	Figures	xxiii
7.4	Earth orbit rendezvous-lunar orbit rendezvous mission architecture	192
7.5	Earth orbit rendezvous-direct return mission architecture	193
7.6	Earth orbit rendezvous–lunar orbit rendezvous with Crew Exploration Vehicle	
	to surface mission architecture	195
7.7	Lunar Surface Access Module single-level and split-level configurations	203
7.8	Lunar Surface Access Module Minimized Ascent Stage configuration	204
7.9	Lunar Surface Access Module Separate Airlock configuration	205
7.10	Lunar Surface Access Module Combined Concept configuration	205
7.11	Lunar Surface Access Module	color
7.12	Lunar outpost deployment architecture	color
8.1	DIRECT v2.0 Jupiter Launch Vehicle	221
8.2	Components of the DIRECT Jupiter Launch Vehicle	222
8.3	Exploded view of DIRECT's Jupiter 232	color
8.4	Space Shuttle solid rocket booster	224
8.5	RS-68 rocket engine on Stennis Space Center's A-1 Test Stand	226
8.6	DIRECT transition from the Space Shuttle to the Jupiter launch system	232
9.1	The extravehicular activity suits worn by Apollo astronauts	245
9.2	Dr. Dean Eppler wears the Mark III advanced demonstration space suit	color
9.3	Demonstrating the Mark III suit's dexterity	color
9.4	Spacesuit engineer Dustin Gohmert simulates work in a mock crater of JSC's Lunar Yard	color
9.5	The revolutionary Bio-Suit	color
9.6	Artist's rendering of two astronauts establishing a worksite with scientific	color
9.7	equipment	255
9. / 10.1	The Autonomous Drilling Rover	255 266
10.1	Virgin Galactic's SpaceShipOne	267
10.2	SoyuzBigelow Aerospace's BA330 Module	207
10.5	Digelow Acrospace 8 DASSO Module	Z / I

Tables

1.1	Synopsis of NASA's plan for space exploration
1.2	Exploration Systems Architecture Study figures of merit
1.3	NASA centers supporting the Constellation Program
1.4	Major engine tests, flight tests, and initial Constellation Program missions
2.1	Planned Shenzhou missions
2.2	Advanced Crew Transportation System (ACTS)
2.3	M ³ Launch Vehicles
2.4	M ³ support missions
2.5	M ³ main mission modules
3.1	Original ESAS comparison of crew launch systems to LEO
3.2	Original ESAS Comparison of Cargo Launch Systems to LEO
3.3	Project Technical Reviews
3.4	CARD Crew Launch Vehicle description and requirements
3.5	CARD Cargo Launch Vehicle description and requirements
3.6	Potential RS-68 upgrades
3.7	Altair compared with Apollo Lunar Module
3.8	CARD Lunar Surface Access Module description and requirements
3.9	Altair variant characteristics
3.10	Altair-Orion one-orbit rendezvous sequence
3.11	Altair–Orion two-orbit rendezvous sequence
3.12	Powered descent initiation abort sequence
3.13	Abort 120 seconds following powered descent initiation
3.14	Abort 258 seconds following powered descent initiation
4.1	Contractors chosen for CEV development studies
4.2	Contractors CEV design and mission plan summary 88
4.3	CARD CEV description and requirements
4.4	Requirements and constraints for spacecraft design
4.5	CEV requirements94
4.6	Vehicle configuration summary99
4.7	Crew Exploration Vehicle design cycle evolution

xxvi Tables

4.8	Orion Crew Exploration Vehicle	102
4.9	Service Module	112
4.10	Spacecraft Adapter	115
4.11	Launch Abort System summary	116
4.12	Orion abort modes	118
5.1	Estimated lunar surface temperature	123
5.2	Habitat Module geometry analysis	126
5.3	Habitat functionality	128
5.4	Lunar Base configuration assessment	131
5.5	Typical Space Habitat atmosphere requirements	133
5.6	Daily human input and output requirements	134
5.7	Energy expenditure during 10-hour lunar EVA	135
5.8	Outpost communication traffic model	145
5.9	Lunar relay satellite	146
6.1	Events leading to adverse psychological effects during the NASA–Mir missions	155
6.2	Radiation doses during space missions	169
6.3	Astronaut radiation exposure limits	170
6.4	Classification of stressors in long-duration spaceflight	172
6.5	Medical problems on-orbit	176
6.6	Classification of illnesses and injuries in spaceflight	177
6.7	NASA medical training for International Space Station crewmembers	178
7.1	Lunar Reconnaissance Orbiter instrument payload	188
7.2	LSAM trade mass summaries	206
7.3	Major lunar architecture risks	209
8.1	DIRECT Jupiter 120 and Jupiter 232 Launch Vehicle concept specifications	223
8.2	J-2 variants: JLS Upper Stage engine specifications	228
9.1	Lunar exploration objectives	242
9.2	EVA tasks during lunar sortie and outpost missions	244
9.3	Design features and technological requirements of lunar EMUs	246
9.4	ISRU products and services	253
G.1	NPR 8705.2 criteria	278
G.2	NASA Technology Readiness Levels	283

Acronyms and abbreviations

ACES Advanced Crew Escape Suit
ACLS Advanced Cardiac Life Support

ACTS Advanced Crew Transportation System AETB-8 Alumina Enhanced Thermal Barrier-8

AIAA American Institute of Aeronautics and Astronautics

ALARA As low as reasonably achievable

ALHAT Autonomous landing and hazard avoidance technology

AOD Automatic opening device APG Advanced Programs Group

APMC Agency Program Management Council AR&D Automated rendezvous and docking

ARC Ames Research Center

ARPCS Atmosphere Revitalization Pressure Control System

ARS Acute radiation syndrome
ARS Air Revitalization System
ASI Artemis Society International
ASI Augmented Spark Igniter
ASM Aft Service Module

ATCO Ambient temperature catalytic oxidation

ATCS Active Thermal Control System

ATHLETE All-Terrain-Hex-Legged Extra-Terrestrial Explorer

ATO Abort to orbit
ATS Aft Thrust Structure

ATSS Advanced Transportation System studies

AUS Advanced Upper Stage

AV Ancillary Valve BFO Blood-forming organ

BLSS Biological Life Support System

xxviii Acronyms and abbreviations

BMD Bone mineral density

BMI Bismaleimide

BMU Battery Module Unit BPC Boost Protective Cover

BUAA Beijing's University of Aeronautics and Astronautics

C&C Command and control

C&N Communications and navigation

C3I Command, control, communication, and information

CAD Computer-aided design CAD Coronary artery disease

CAIB Columbia Accident Investigation Board

CaLV Cargo Launch Vehicle

CAM Computer-assisted manufacturing

CARD Constellation Architecture Requirements Document

CAS Chinese Academy of Sciences
CBO Congressional Budget Office

CC Cargo Container

CCB Common Core Booster

CCDH Command, control, and data handling

CDE Carbon dioxide electrolysis
CDF Concurrent Design Facility
CDM Crew Descent Mission

CDMKS Crew Descent Mission Kick Stage

CDR Critical Design Review
CDS Crew Descent Support
CDV Cargo Delivery Vehicle

CE&R Concept Exploration and Refinement (program)

CEV Crew Exploration Vehicle
CFD Computational fluid dynamics

CG Center of gravity

CH₄ Methane

CHeCS Crew Health Care System
CLL Cargo Lunar Lander
CLV Crew Launch Vehicle

CM Crew Module

CMC Center Management Council
CME Coronal mass ejection
CMO Crew Medical Officer

CMRS Carbon Dioxide and Moisture Removal System

CNS Central nervous system

CNSA China National Space Administration

CONUS Continental United States

COTS Commercial Orbital Transportation System

CP Center of pressure

CPDS Charged Particle Directional Spectrometer

Cosmic Ray Telescope for the Effects of Radiation **CRaTER**

CRC Crew Re-Entry Capsule

CRS Congressional Research Service

Canadian Space Agency **CSA**

Cargo Star Horizontal Lander **CSHL CSSS** Constellation Space Suit System

Crew Transfer Module CTM **CVO** Cargo variant of Orion CXV Crew Transfer Vehicle

North Atlantic Downrange Abort Exclusion Zone DAEZ

DASH Descent Assisted Split Habitat

Data Acquisition Unit DAU DC-X Delta Clipper Experimental Design Certification Review DCR Decompression sickness DCS

Design, development, testing, and evaluation DDT&E

Direct Shuttle Derivative DIRECT DoD Department of Defence

Depth of field DoF

DOI Descent orbit insertion **DPT** Decadel Planning Team Design Reference Mission DRM Double-strand break **DSB**

DS Descent Stage

DSE-Alpha Deep Space Exploration-Alpha

Deep-space exploration **DSE** Direct Staged Mission **DSM** DSS Deep Space Shuttle DSS Deceleration Subsystem DTA Drop Test Article DTE Direct to Earth

Environmental Control and Life Support System **ECLSS**

EDS Earth Departure Stage

EELV Evolved Expendable Launch Vehicle

Emergency Egress System EES

Escape Habitat EH

ESAS Initial Reference Architecture **EIRA ELPO Exploration Launch Projects Office**

ELV Expendable Launch Vehicle Earth-Moon Lagrange Point 1 EML1 Earth-Moon Lagrange rendezvous **EMLR**

Electronic Meeting System **EMS**

Extravehicular Activity Mobility Unit **EMU**

EOI Earth orbit insertion Earth orbit rendezvous **EOR**

xxx Acronyms and abbreviations

EOR-LOR Earth orbit rendezvous-lunar orbit rendezvous

EPS Electrical Power System
ERO Earth rendezvous orbit
ESA European Space Agency

ESAS Exploration Systems Architecture Study ESMD Exploration Systems Mission Directorate

ESTEC European Space Research and Technology Centre

ESTRACK European Space Tracking

ET External Tank

ETDP Exploration Technology Development Program

ETO Earth to orbit

EUS Expendable Upper Stage
EVA Extravehicular activity
FAS Flight Analysis System

FAST Flight application of spacecraft technologies

FBR Fixed Base Radio

FIRST Flight-oriented Integrated Reliability and Safety Tool

FLO First Lunar Outpost FOM Figure of merit

FRR Flight Readiness Review

FS First Stage

FSAM First Stage Avionics Module FSM Forward Service Module FSO Family Support Office

FSRCS First Stage Roll Control System

FSS Fixed Service Structure FTI Fusion Technology Institute

FTV Flight Test Vehicle

GAO Government Accountability Office

GCR Galactic cosmic radiation
GGI Gas generator ignition
GHe Gaseous helium

GLOW Gross lift-off weight

GN&C Guidance, Navigation & Control

GOX Gaseous oxygen

GPC General purpose computer
GPS Global Positioning System
GR&A Ground rules and assumption
GRC Glenn Research Center

GSFC Goddard Space Flight Center

Gy Gray

H-Suit Hybrid Suit

HCM Habitat Crew Module

He-3 Helium-3

HEAT High-fidelity environment analog training

Hazardous Gas Detection System **HGDS** HHFO Habitability and Human Factors Office

HLLV Heavy Lift Launch Vehicle Habitat Logistics Module HLM Human Lunar Return (study) HLR

HLV Heavy Lift Vehicle HMHabitation Module **HMD** Head Mounted Display Habitat Maintenance Module **HMM** High-density polyethylene **HPDE** Human Patient Simulator **HPS**

Hydraulic Power Unit Controller **HPUC**

HSM Habitat Science Module Helium Spin Start Valve **HSSV**

Human Spaceflight Vision Group **HSVG** Hydroxyterminator polybutadiene **HTPB**

Heads Up Display HUD

Integrated Cryogenic Evolved Stage **ICES**

Ion Exchange Bed IEB

ILOB Icarus Lunar Observatory Base Initial mass in low Earth orbit **IMLEO** Inertial Navigation System INS

InSAR Interferometric Synthetic Aperture Radar

IPT Integrated Product Team

IRED Interim Resistive Exercise Device

Isolation Study for European Manned Space Infrastructure **ISEMSI**

Integrated Space Plan **ISP** I_{SP} Specific impulse

ISRU In situ resource utilization **ISS International Space Station** Interplanetary Transfer Vehicle ITVInstrument Unit Avionics **IUA** Intravehicular activity **IVA**

JAXA Japan's Aerospace Exploration Agency

Jupiter Common Core **JCC** Jupiter Launch System JLS JPL Jet Propulsion Laboratory Johnson Space Center **JSC** JUS Jupiter Upper Stage Kennedy Space Center **KSC** Lift to drag (ratio) L/D Lagrange Point 1 L1

Liquid Acquisition Device LAD Laser detection and ranging **LADAR** Lyman Alpha Mapping Project LAMP

xxxii Acronyms and abbreviations

LandIR Landing and Impact Research (NASA Langley facility)

LAS Launch Abort System
LAT Lunar Architecture Team
LBNP Lower-body negative pressure

LCD Liquid crystal display LCG Liquid Cooling Garment

LCH₄ Liquid methane

LCROSS Lunar Crater Observation and Sensing Satellite

LCT Lunar Communication Terminal LCT Long Duration Cryogenic Tank

LEB Lunar Exploration Base
LEM Lunar Excursion Module

LEND Lunar Exploration Neutron Detector

LEO Low Earth orbit
LES Launch Escape System
LEV Lunar Excursion Vehicle

LExSWG Lunar Exploration Science Working Group

LH₂ Liquid hydrogen

LIDAR Light detection and ranging LIDS Low Impact Docking System

LiOH Lithium hydroxide

LLAN Lunar Local Area Network

LLO Low lunar orbit LLOX Lunar liquid oxygen

LLPS Lunar Lander Preparatory Study

LM Lander Module
LM Logistics Module
LMM Lunar mission mode

LOC Loss of crew

LOI Lunar orbit insertion

LOLA Lunar Orbiter Laser Altimeter

LOM Loss of mission

LOR Lunar orbit rendezvous

LOX Liquid oxygen

LPMR Lunar Polar Mission Rover

LPRP Lunar Precursor Robotic Program

LRC Langley Research Center
LRC Lunar Resources Company
LRL Lunar Reconnaissance Lander
LRO Lunar Reconnaissance Orbiter

LRO Lunar rendezvous orbit

LROC Lunar Reconnaissance Orbiter Camera

LRS Lunar Relay Satellite

LSAM Lunar Surface Access Module

LSE Lunar Surface Explorer

Lunar Surface Mobility System LSMS

LSS Life Support System LTO Lunar transfer orbit LTV Lunar Transfer Vehicle LUT Launcher Umbilical Tower

LVLaunch Vehicle

 M^3 Manned Mission to the Moon MAF Michoud Assembly Facility MAH Mission Ascent Habitat

Minimum volume Ascent Vehicle MAV

Max-ATO Maximized abort to orbit

Max-TAL. Maximized targeted abort landing

MBR Model-based reasoning

Million Clinical Multiphasic Inventory **MCMI**

Mechanical counter-pressure **MCP**

Major Design Review **MDR**

Manufacturing Demonstration Unit **MDU**

MECO Main engine cut-off

Massachusetts Institute of Technology MIT

Max Launch Abort System MLAS

Multilaver insulation MLI Mobile Launcher Platform MLP

MLUT Minimal Launch Umbilical Tower

Mission Module MM

MMH Monomethyl hydrazine Mission Management Office MMO Micrometeroid/orbital debris MMOD

MMPI Minnesota Multiphasic Personality Inventory

Main Parachute Support System MPSS Manufacturing Readiness Review MRR Marshall Space Flight Center **MSFC**

Mars Transit Vehicle MTV

National Aeronautics and Space Administration **NASA NCRP** National Council on Radiation Protection

NEEMO NASA Extreme Environment Mission Operations

NASA Exploration Team **NExT**

National Oceanic and Atmospheric Administration NOAA

NPR NASA procedural requirement

National Space Biomedical Research Institute **NSBRI**

NASA Standard Detonator **NSD**

Nitrogen tetroxide NTO

Operational Bioinstrumentation System OBS

Office of Exploration **OExP**

OMB Office of Management and Budget

Outer mold line OML.

xxxiv Acronyms and abbreviations

OMS Orbital Maneuvering System

OBS Operational Bioinstrumentation System

ORN Osteoradionecrosis

OSC Orbital Sciences Corporation

OSP Orbital Space Plane

OTIS Optimal trajectories via implicit simulation

OTV Orbital Transfer Vehicle
P/LOC Probability of loss of crew
P/LOM Probability of loss of mission

PBAN Polybutadiene acrylic acid acrylonitrile

PCA Pneumatic control assembly
PCC Pressurized Cargo Carrier
PCR Pressurized Crew Rover
PCU Power control unit

PDI Powered descent initiation PDR Preliminary Design Review

PE Polyethylene

PEG Powered explicit guidance PFTE Poly-tetrafluorethylene

PICA Phenolic-impregnated carbon ablator

PLSS Portable Life Support System

PM Payload Module

PMAD Power Management and Distribution (system)

PNT Position, navigation, and timing

POD Point of departure
PPA Power Pack Assembly
PPO₂ Partial pressure of oxygen
PSG Psychological Services Group

PV Photovoltaic

R&D Research and development

r.m.s. Root mean square

RATS Research and Technology Study
RCS Reaction Control System
RCT Reaction Control Thruster
RDM Robotic Descent Module

REI Rear Entry I-Suit

REID Risk of exposure-induced death
REM Radiation equivalent man
RFA Request for action
RFC Regenerative Fuel Cell
RLV Reusable Launch Vehicle

RM Re-entry Module RM Resource Module

RMS Remote Manipulator System ROC Resnick, O'Neill, Cramer

Rocket and Space Corporation RSC RSRB Reusable Solid Rocket Booster **RSRM** Reusable Solid Rocket Motor RSS Rotating Service Structure S&MA Safety Mission Assurance Office Support Ascent Escape Habitat SAEH

Shuttle and Apollo Generation Expert Services **SAGES**

Synthetic Aperture Radar SAR

Search and rescue satellite-aided tracking SARSAT Small Business Innovative Research SBIR

SCA Spacecraft Adapter Solar cosmic ray **SCR**

SEL Space Exploration Initiative Space Exploration Module **SEM**

Factor of safety SF

Simulation of Flight of International Crew on Space Station **SFINCSS**

Surface Habitat SH SLS Saturn Launch System

Service Module SM

SOHO Solar and Heliospheric Observatory

Simulation and optimization of rocket trajectories SORT

Screening Program for Architecture Capability Evaluation **SPACE**

SPE Solar particle event Surface Power Module **SPM**

SPWE Solid Polymer Water Electrolysis

Strange quark matter **SOM** Solid Rocket Booster SRB **SRM** Solid Rocket Motor

System Requirements Review SRR

SS Satellite and storage Single-strand break SSB Stennis Space Center SSC

Systems and Software Consortium SSC SSME Space Shuttle Main Engine

Space Shuttle Solid Rocket Booster **SSRB**

Satellite and storage SS Single stage to orbit **SSTO**

SvSievert **SYZ** Sovuz

TAL Targeted abort landing Trans-Earth injection TEI

Tissue Equivalent Proportional Counter TEPC

Technical Interface Meeting TIM

TLI Translunar injection Thrust oscillation TO