SpringerBriefs in Materials

Rachid Masrour

Electronic, Magnetic, and
Thermoelectric Properties
of Spinel Ferrite Systems
A Monte Carlo Study,
Mean-Field Theory,
High-Temperature Series
Expansions, and Ab-Initio
Calculations

@ Springer



SpringerBriefs in Materials

Series Editors
Sujata K. Bhatia, University of Delaware, Newark, DE, USA
Alain Diebold, Schenectady, NY, USA

Juejun Hu, Department of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA

Kannan M. Krishnan, University of Washington, Seattle, WA, USA

Dario Narducci, Department of Materials Science, University of Milano Bicocca,
Milano, Italy

Suprakas Sinha Ray @), Centre for Nanostructures Materials, Council for Scientific
and Industrial Research, Brummeria, Pretoria, South Africa

Gerhard Wilde, Altenberge, Nordrhein-Westfalen, Germany


https://orcid.org/0000-0002-0007-2595

The SpringerBriefs Series in Materials presents highly relevant, concise monographs
on a wide range of topics covering fundamental advances and new applications
in the field. Areas of interest include topical information on innovative, structural
and functional materials and composites as well as fundamental principles, physical
properties, materials theory and design.

SpringerBriefs present succinct summaries of cutting-edge research and practical
applications across a wide spectrum of fields. Featuring compact volumes of 50 to
125 pages, the series covers arange of content from professional to academic. Typical
topics might include

A timely report of state-of-the art analytical techniques

A bridge between new research results, as published in journal articles, and a
contextual literature review

A snapshot of a hot or emerging topic

An in-depth case study or clinical example

A presentation of core concepts that students must understand in order to make
independent contributions

Briefs are characterized by fast, global electronic dissemination, standard publishing
contracts, standardized manuscript preparation and formatting guidelines, and
expedited production schedules.

Indexed in Scopus (2022).



Rachid Masrour

Electronic, Magnetic,

and Thermoelectric
Properties of Spinel Ferrite
Systems

A Monte Carlo Study, Mean-Field Theory,
High-Temperature Series Expansions,
and Ab-Initio Calculations

@ Springer



Rachid Masrour

Laboratory of Solid Physics

Faculty of Sciences Dhar El Mahraz
Sidi Mohamed Ben Abdellah University
Fez, Morocco

ISSN 2192-1091 ISSN 2192-1105 (electronic)
SpringerBriefs in Materials
ISBN 978-3-031-40612-6 ISBN 978-3-031-40613-3 (eBook)

https://doi.org/10.1007/978-3-031-40613-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-031-40613-3

General Introduction

AB,Oy4 spinel oxides comprising two transition metal elements (i.e., A and B) and
oxygens exhibit interesting and varying structural, electrical, and magnetic prop-
erties. Among them, NiCo,O4 has an inverse spinel structure in which half of Co
ions occupy tetrahedral sites (A-sites), whereas the other half of Co ions and all Ni
ions occupy octahedral sites (B-sites) [1, 2]. In recent years, Ferrimagnetic Nanopar-
ticles (FMNPs) have witnessed extensive nanoscience growth due to their unique
magnetic properties of nanoparticles (Fe;O4, Fe;O3) and synthesis methods [3].
Fe,O; exhibits solid magnetic characteristics due to its high magnetization satura-
tion (Ms), 92 emu/g of material at ambient temperature, and high curie tempera-
ture (T.) of 577 °C [4]. Antiferromagnetic (AFM) spintronics is an emerging field
aiming to manipulate and control spins for future data storage applications [5-7].
Such interest is owing to the promising features hosted by AFM materials, including
non-stray fields, high exchange interaction, manipulation of the spin wave at the
terahertz frequencies, and efficiency in transport mechanisms compared to Ferro-
magnetic (FM) counterparts [8—10]. The ferrimagnetic systems are well adapted to
study magnetic properties of a certain type of magnetic materials which are solicited
for the aforementioned technological applications as well as academic researches
[11, 12]. Theoretically, several studies on mixed-spin systems have been carried out
to investigate their magnetic properties by using different numerical techniques of
statistical physics, including renormalization group technique [13, 14], mean-field
approximation [15, 16], effective-field theory [17, 18], Monte Carlo simulations [19,
20], or exact recursion relations on various structures such as square [22], honey-
comb [23], Bethe—Heitler production of dileptons with high invariant mass [24], cubic
lattices, and hexagonal core—shell structure [26, 27]. The novel dynamic behaviors
in a ferrimagnetic Gdx(FeCo);_x nanosphere model with different Gd compositions
ranging from x = 0 to 0.44 at finite 0—1200 K temperatures using stochastic atomistic
numerical calculations [28]. Stanciu et al. experimentally observed the temperature
dependence of dynamic modes in amorphous GdFeCo using an all-optical pump—
probe technique; the Ferromagnetic Resonance (FMR) frequency rapidly increased
when the temperature approached the angular momentum compensation point. Also,
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Kim et al. experimentally determined that domain wall mobility in a GdFeCo ferri-
magnet is enhanced at the angular momentum compensation temperature. Zhu et al.
proposed a robust means of determining the angular momentum compensation point
in ferrimagnets based on the Curie—Weiss theory. Yamamoto et al. [32, 33] employed
Density Matrix Renormalization Group Technique (DMRG) and Quantum Monte
Carlo (QMC) method to calculate the thermodynamic properties of the Heisenberg
ferrimagnetic mixed-spin chain. By using the DMRG and Spin-Wave Theory (SWT),
Langari studied the phase diagram of XXZ anisotropic ferrimagetic spin-(1/2, 1)
chain under the presence of a transverse magnetic field. Chen [35, 36] investigated
the excited states and thermodynamic properties of the Heisenberg ferrimagnetic
spin chain by using Dyson—Maleev Mean-Field (DMMF) theory and Bond Operator
(BO) method. The Double Perovskite Oxides (DPO) with general formula A;BB’Og
(where A is alkaline or rare earth metal and the cation B(B’) having 3(4/5)d states
are taken from two different transition metals) have attained much interest due to
their unusual and marvelous physical properties such as colossal magnetoresistance
[37, 38], multiferrocity [39], thermo-electricity [40], structure stability [41], magne-
todielectricity [42], giant anisotropic magneto-caloric effect, etc. [43]. The density
functional theory, Monte Carlo simulations, Green function, and high-temperature
series expansions were applied for a series of spinel systems [44—47].
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