
Modern Software
Testing Techniques

A Practical Guide for Developers
and Testers
—
István Forgács
Attila Kovács

Modern Software
Testing Techniques

A Practical Guide
for Developers and Testers

István Forgács
Attila Kovács

Modern Software Testing Techniques: A Practical Guide for Developers

and Testers

ISBN-13 (pbk): 978-1-4842-9892-3 ISBN-13 (electronic): 978-1-4842-9893-0
https://doi.org/10.1007/978-1-4842-9893-0

Copyright © 2024 by István Forgács and Attila Kovács

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

István Forgács
Budapest, Hungary

Attila Kovács
Budapest, Hungary

https://doi.org/10.1007/978-1-4842-9893-0

iii

Table of Contents

About the Authors ���vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

Introduction ���xiii

Abbreviations ���xvii

Chapter 1: Software Testing Basics ��1

Bugs and Other Software Quality Destroyers ��1

Lifetime of Bugs: From Cradle to Coffin ���2

Pesticides Against Bugs ��4

Classification of Bugs ��9

Software Testing ���12

Testing Life Cycle���12

Fault-Based Testing ���26

Requirements and Testing ���30

Testing Principles ��33

Summary���41

Chapter 2: Test Design Automation by Model-Based Testing �������������43

Higher-Order Bugs ��44

Model-Based Testing ���48

One-Phase (Traditional) Model-Based Testing ��49

Two-Phase Model-Based Testing ��55

iv

Stateless Modeling ���59

Use Case Testing ���68

Stateful Modeling ��72

FSM and EFSM-Based Modeling ���74

How to Select States? ���77

Model Maintenance ���80

How to Create a Stateful Model – Example ���81

Efficiency, Advantages, and Disadvantages ���88

Stateless and Stateful Together – Action-State Testing ��������������������������������������90

The Action-State Model ���93

Test Selection Criteria for Action-State Testing ���98

Creating Action-State Model ��100

Comparison with Stateful Modeling ��108

How a Real Bug Can Be Detected? ���112

Summary���115

Chapter 3: Domain Testing ��119

Equivalence Partitioning ���120

Obtaining Partitions Without Partitioning���124

Equivalence Partitioning and Combinatorial Testing �����������������������������������127

Domain Analysis ��131

Test Selection for Atomic Predicates ���132

Selecting Tests for Predicates Comprising Two Atomic Components ����������142

Test Selection for General Compound Predicates��151

Test Selection for Multidimensional Ranges ���153

Optimized Domain Testing (ODT) ���155

Boundary-Based Approach ��155

Rule-Based Approach ��163

Table of ConTenTs

v

Safety-Critical Aspects of ODT ��184

How ODT Can Help Developers ���185

ODT at Different Abstraction Levels ��191

Black-Box Solution ��192

Gray-Box Solution ��196

White-Box Solution ��202

Comparing ODT with Traditional Techniques ���202

Applying ODT with Other Techniques ��205

Summary���205

Chapter 4: Developers and Testers Should Constitute a
Successful Team ���207

How Developers Can Help Testers ��208

How Testers Can Help Developers ��211

How to Find Tricky a Tricky Bug ��216

Flaky Test ��217

Developer – Tester Synergies ���218

Summary���227

Chapter 5: Conclusion ���229

 Appendixes ���233

 Glossary ��247

 References ��251

Index ���257

Table of ConTenTs

vii

About the Authors

István Forgács, PhD, was originally a

researcher at the Computer and Automation

Research Institute of the Hungarian Academy

of Sciences. He has had more than 25 scientific

articles published in leading international

journals and conference proceedings. He

is the co-author of the book Agile Testing

Foundations: An ISTQB Foundation Level

Agile Tester guide and the book Practical Test

Design: Selection of Traditional and Automated Test Design Techniques. His

research interests include test design, agile testing, model-based testing,

debugging, code comprehension, and static and dynamic analysis. He left

his academic life in 1998 to be a founder of Y2KO, the startup company

that offered an efficient solution to the Y2K project. He is the founder

and Chief Executive Officer of 4Test-Plus and is a former CEO of 4D Soft.

He is an author of the Advanced Test Analyst Working Group and former

member of the Agile Working Group of ISTQB. István is the creator and

key contributor of the only two- phase model-based test automation tool

Harmony.

viii

Attila Kovács is full professor at Eötvös

Loránd University, Budapest, Faculty of

Informatics. His research interests are in

software engineering, software quality, number

theory, and cryptography. He received an MSc

in computer science and mathematics and

a PhD in informatics. His teaching activity

covers a wide range of subjects, including

several courses in mathematics and software

engineering. He spent several years as a researcher at the University of

Paderborn, Germany, and at the Radboud University, Nijmegen, the

Netherlands. He received an award for outstanding research from the

Hungarian Academy of Sciences (Young Scientist Prize). He is a project

leader of several research and development projects and consults for

companies on issues including software quality, software testing, safety,

and reliability. He is an ISTQB and IREB trainer and a founding member

of the Hungarian Testing Board. He is currently the professional head of

the “Software and Data-Intensive Services” Competence Center at Eötvös

Loránd University.

abouT The auThors

ix

About the Technical Reviewer

Kenneth Fukizi is a software engineer,

architect, and consultant with experience in

coding on different platforms internationally.

Prior to dedicated software development, he

worked as a lecturer and was then head of

IT at different organizations. He has domain

experience working with technology for

companies mainly in the financial sector.

When he’s not working, he likes reading up on emerging technologies and

strives to be an active member of the software community.

Kenneth currently leads a community of African developers through a

startup company called AfrikanCoder.

xi

Acknowledgments

We are grateful to all of those whom we have had the pleasure to work

with during this book-writing project: colleagues, friends, the Apress and

Springer Nature teams, and especially Kenneth Fukizi.

We are grateful to Bernát Kalló for continuously helping us with good

pieces of advice when Harmony’s test design features were implemented.

István: I would like to thank my wife Margó who helped me a lot and

made everything to remain healthy and young.

Attila: I want to express my gratitude to my students and colleagues,

as well as to my children, Bendegúz and Barnabás, my parents, and my

beloved partner.

xiii

Introduction

Oh my gosh, yet another book about software testing…

Indeed, many books have already been written about software

testing. Most of them discuss the general framework of testing from

different perspectives. Of course, in a test project, the methodological and

organizational aspects are essential. However, excellent test organization

is only one component of testing effectiveness. You need software that

has only a few or no bugs. This can be achieved if the tests can catch all or

almost all the faults.

The goal is to create efficient and effective tests. All comprehensive

books about software testing that include test design contain the same

story: simple examples about use case testing, equivalence partitioning

(EP), boundary value analysis (BVA), state transition testing (STT), etc.

The present situation of software test design is like classical mechanics:

almost nothing has changed since Newton. Current materials about

software testing and especially about software test design are either trivial

or contradictory or even obsolete. The existing test design techniques are

only best practices; the applied techniques are nonvalidated regarding

bug-revealing capability and reliability. For example, current EP and BVA

techniques give nonreliable results even in the case of a single predicate

stating that two or three test cases are enough. The situation with use

case testing is not better; that is, several bugs remain undetected. Modern

testing needs more efficient test techniques and test models.

In this book, we show a basic classification of the software bugs from

the viewpoint of functional specification. We show why traditional test

design techniques are ineffective, and we present reliable and efficient

solutions for revealing different types of faults. We are convinced that new

xiv

techniques in software testing are necessary, and we hope that by applying

our methods, software becomes better in the future.

In the last decade, the adoption of new test automation technologies

such as codeless test automation has led to more efficient testing that

could save time and effort. Virtualization enables optimizing technological

processes. Agile testing made testing tasks more customer focused. All the

mentioned improvements influence software testing positively. However,

those improvements didn’t result in significantly better software. Our

goal is fundamentally improving software quality. This can be achieved

by reliable test design techniques with more efficient fault-revealing

capabilities. This is exactly what we are aiming at in our book.

You surely realize that software applications contain numerous bugs.

In 1969, we were able to send humans to the Moon and back, but more

than 50 years later, we are not able to produce “almost bug-free” software.

We know that exhaustive testing is impossible. Is this the real reason for

the bugs that remain in the software after testing? Not at all. You are unable

to find all the bugs in large software. However, you can find “almost” all

of them. You may say: “OK, but the cost will be too high, and I had better

leave the tricky bugs in the code.” And you may follow the usual path of

converting faults into features. Don’t do that! Almost all the bugs can be

found by applying the test design techniques described in this book.

In this book, we introduce the notion of two-phase model-based

testing, action-state testing, and optimized domain testing. These

techniques can be used for finding most bugs if the competent tester and

the coupling effect hypotheses hold. The first hypothesis states that testers

create test cases that are close to being a reliable test set for the correct

program. The second hypothesis states that a test set that can detect the

presence of single faults in the implementation is also likely to detect

the presence of multiple faults. As all the case studies have justified this

hypothesis so far, we strongly believe in it.

InTroduCTIon

xv

Our book is a part of our test design knowledge and application

methodology that consists of three elements:

 1. Learn by reading this book.

 2. Exercise our tasks made for you by visiting our

website: https://test-design.org/practical-

exercises/.

 3. Apply our new test design techniques for your tasks

by using our algorithms and tools.

In our exercise platform, you are not only able to check your

knowledge, but the platform also explains how you might improve it, that

is, which tests are missing. We suggest trying to solve some exercises by

first applying the traditional and then the new techniques. You will see the

difference. By applying the new techniques, the test cases you design will

find almost all the bugs.

This book is both for developers and testers. Chapter 1 is a clear and

short summary of software testing; our developer and tester readers will

find it useful. It contains sections explaining why risk analysis is obligatory,

how to classify bugs practically, and how fault-based testing can be used

for improving test design. The last part of this book contains a chapter

on how developers and testers can help each other and work as an

excellent team.

If you are interested in studying traditional software test design more

deeply, we suggest reading our previous book Practical Test Design. That

book contains nontrivial examples, explanations, and techniques, and we

think that the previous book is an excellent warm-up to this one. On the

other hand, this book can be read independently from the previous one.

We hope we can support your career (as a developer or tester) with this

book. Our goal is not just to sell books but to improve the overall quality of

software, where satisfied customers happily use the applications offered

to them.

InTroduCTIon

https://test-design.org/practical-exercises/
https://test-design.org/practical-exercises/

xvii

Abbreviations

AST action-state testing

BVA boundary value analysis

CI/CD continuous integration/continuous deployment

CPH competent programmer hypothesis

CTH competent tester hypothesis

DAG directed acyclic graph

DevOps development and operations

DP defect prevention

EFSM extended finite state machine

EP equivalence partitioning

F false

FSM finite state machine

ISO International organization for standardization

ISTQB International software Testing Qualifications board

LEA learn, exercise, apply

MBT model-based testing

ODT optimized domain testing

PSP personal software process

SDLC software development life cycle

xviii

SQL structured Query language

STT state transition testing

T true

TSP team software process

QML Qt Modeling language

abbrevIaTIons

1© István Forgács and Attila Kovács 2024
I. Forgács and A. Kovács, Modern Software Testing Techniques,
https://doi.org/10.1007/978-1-4842-9893-0_1

CHAPTER 1

Software Testing
Basics
This chapter overviews the basics of software testing from the point of view

of bugs: lifetime, classifications, pursuing processes, and various pesticides

against bugs.

Estimated Time

• Beginners: 100 minutes.

• Intermediates: 80 minutes.

• Experts: We suggest reading sections “Pesticided

Against Bugs”, “Classification of bugs”, “Fault-based

testing”, and “Testing principles”; the rest may be

skipped. It takes 30 minutes.

 Bugs and Other Software Quality Destroyers
Bugs and other software quality destroyers refer to issues or factors that

can negatively impact the quality, reliability, and performance of software.

To mitigate these software quality destroyers, it’s crucial to follow best

https://doi.org/10.1007/978-1-4842-9893-0_1

2

practices in software development, including thorough testing, proper

design and architecture, effective documentation, security considerations,

performance optimization, user-centric design, and ongoing maintenance

and updates. This section overviews the quality from the perspective of

the bugs.

 Lifetime of Bugs: From Cradle to Coffin
Software is implemented by developers or generated by models designed

by software engineers. Non-considering AI created software, the developer

is the one who creates the bugs. Why? There can be many reasons.

First, because developers are humans. Successful and scalable software

products need professional architecting, designing, and coding. There are

many places and reasons where and when bugs can arise. Professional

developers need to have programming skills, need to know architecture

and design patterns, and need to have some domain knowledge and skills

for handling databases, networks, hardware architectures, algorithms, etc.

Note that the developers build up the quality of the software. The testers

support the developers via quality control.

At present, software is produced mainly manually with the help of

some artificial intelligence applications. One of the most important levels

for building an application is the programming language level. There are

plenty of programming languages. Note that in each situation, there can

be many factors determining the “best” programming language. Complex

applications require applying more programming languages, frameworks,

and libraries together.

Programming language paradigms can be imperative or declarative.

In the first case, the developer focuses on how the underlying machine

will execute statements. Programs define control flow and usually the

way how the program states are changed. Imperative programming

Chapter 1 Software teSting BaSiCS

3

is a programming paradigm that uses statements that change the

program’s states. “Declarative programming is a style of building the

structure and elements of computer programs that expresses the logic

of a computation without describing its control flow” (Lloyd 1994). The

imperative classification can be broken down into multiple paradigms

such as structured, procedural, and object-oriented (however, there are

declarative object-oriented languages like Visual Prolog or QML), while

declarative programming is an umbrella term of constraint, functional,

and logic programming including domain-specific languages. Other

paradigms, orthogonal to the imperative or declarative classification, may

include concurrent and generative programming. Independently from the

chosen language, any programming model describes some kind of logic

and data.

This book does not contain the details of programming (procedures,

objects, classes, type systems, generics, pattern matching, etc.); however,

we use some abstract programming elements (pseudocode) and

sometimes Python.

An error is a mistake, misconception, or misunderstanding during the

SDLC. Errors can arise in different places: in the requirement specification,

in the architecture, in the code, in the data structure, in the documents,

etc. Due to different errors, software bugs are inserted into the code.

“A software bug is a flaw or fault in a computer program or system

that causes it to produce an incorrect or unexpected result, or to behave in

unintended ways” (Wikipedia). Note that we use the terms “bug,” “defect,”

and “fault” interchangeably according to the traditional phrasing in the

literature. Bugs affect program functionality and may result in incorrect

output, referred to as failure. Later in this chapter, we overview the existing

bug classification and describe a new one. Bugs can arise in different

software life cycle phases. Bugs can celebrate their dawn as a result of

faulty requirements analysis, software design, coding, testing, and even

erroneous maintenance. Bugs can slip through the quality gate of unit,

Chapter 1 Software teSting BaSiCS

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/State_(computer_science)
https://scholar.google.com/citations?user=ko4eO0wAAAAJ&hl=en&oi=sra
https://en.wikipedia.org/wiki/Fault_(technology)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Software_system

4

integration, system, or acceptance testing. Bugs can survive the regression

testing, and new bugs may arise during any change or correction.

Developers and testers share the common goal of reducing the occurrence

of bugs and, if any exist, detecting them through the creation of “killer”

tests before the software release.

Technically, the very first step to avoiding the rise of bugs is to

surmount the chosen programming language. Second, the requirements

must be well-defined, unambiguous, complete, and well-understood.

Hence, developers (and testers) need to understand the requirements

(business, product, process, transition, etc.) and be able to understand the

various requirements models. In the following, we overview the possible

pesticides against software bugs.

 Pesticides Against Bugs
Unfortunately, the unified theory of testing does not exist and will not

exist. A good SDLC includes various activities to minimize the bugs such as

defect prevention, detection, and correction.

In the early phases of implementing a system, subsystem, or feature,

the business rules and requirements that are incomplete or ambiguous will

lead to defects during development. Complex code extended or modified

many times without refactoring will also lead to avoidable defects.

Some people think that defect prevention is bullshit. “How can we

prevent bugs that are already there?” Well, defect prevention is a process

that emphasizes the need for early staged quality feedback for avoiding

defects in the later software products. It stresses the need for quality gates

and reviews and encourages learning from the previous defects. In other

words, defect prevention is a quality improvement process aiming at

identifying common causes of defects and changing the relevant processes

to prevent reoccurrence. The common process of defect prevention is

(1) classifying and analyzing the identified defects, (2) determining and

Chapter 1 Software teSting BaSiCS

5

analyzing the root causes, and (3) feedback on the results for process

improvement (see Forgács et al. 2019). There are numerous techniques for

preventing bugs:

• Apply specification or test models.

• Apply specification by examples.

• Apply test-first methods.

• Manage complexity by divide and conquer.

• Apply the right form of reviews.

• Apply checklists.

• Apply automatic static analyzers.

• Refactor the code.

The first two are related to improving the requirements, the others

are related to improving the code, moreover, the third one improves both.

The first four are “real” preventions as they happen before coding, the

others just before testing. Refactoring is a common prevention technique

used during maintenance. Defect prevention is a cheap solution while

defect correction is more expensive. That’s why defect prevention is valid;

moreover, it is obligatory. Clearly, the main target of any quality assurance

task is to prevent defects.

Fault detection can be made ad hoc and can be semistructured

or structured. The most common structured ways are the black-box

(specification-based) and white-box (structure-based) methods.

In black-box testing, the tester doesn’t need to be aware of how the

software has been implemented, and in many cases, the software source

is not even available. Equivalently, the tester knows only the specification.

What matters is whether the functionality follows the specification or

not. Black-box testing usually consists of functional tests where the tester

enters the input parameters and checks whether the application behaves

Chapter 1 Software teSting BaSiCS

6

correctly and properly handles normal and abnormal events. The most

important step for producing test cases in black-box testing is called

test design.

In contrast, white-box testing is performed based on the structure of

the test object, or more specifically, the tester knows and understands

the code structure of the program. Regarding the code, white-box testing

can be done by testers, but it’s more often done by the developers on their

own. The process of producing white-box testing is called test creation (test

generation).

We note that both black-box and white-box testing can be applied at

any test level. At the unit level, a set of methods or functions implementing

a single functionality should be tested against the specification. At the

system or acceptance level, the whole application is tested. Black-box

testing can be successfully performed without programming knowledge

(however, domain knowledge is an advantage), but white-box testing

requires a certain level of technical knowledge and developers’

involvement. Writing automated test code for black-box and white-box

testing needs programming skills. Nowadays, codeless test automation

tools allow any tester to automate tests. There are plenty of tools

supporting test automation (both free and proprietary). Test automation is

essential for continuous integration and DevOps.

When testing is performed based on the tester’s experience, in the ad

hoc case, we speak about error guessing; in the semistructured case, we

speak about exploratory testing. A special case of the latter is called session-

based testing (Bach 2000).

Besides the mentioned software testing types, there are various

methods for fault detection, such as graph-based approaches (searching

for erroneous control flow dynamic), classifiers (based on machine

learning or Bayesian aiming at identifying abnormal events), and

data-trace pattern analyzers. But none of these methods have been proven

to be efficient in practice yet (however, in some “limited” situations, they

can be applied).

Chapter 1 Software teSting BaSiCS

7

In this book, we primarily focus on the first and most important step

in the fight against bugs: test design. We consider test design as a defect

prevention strategy. Considering the “official” definition, test design is the

“activity of deriving and specifying test cases from test conditions,” where

a test condition is a “test aspect of a component or system identified as a

basis for testing.” Going forward, the test basis is “the body of knowledge

used as the basis for test analysis and design.”

Let’s make it clearer. Requirements or user stories with acceptance

criteria determine what you should test (test objects and test conditions),

and from this, you have to figure out the way of testing; that is, design the

test cases.

One of the most important questions is the following: what are the

requirements and prerequisites of successful test design? If you read

different blogs, articles, or books, you will find the following:

• The time and budget that are available for testing

• Appropriate knowledge and experience of the people

involved

• The target coverage level (measuring the

confidence level)

• The way the software development process is organized

(for instance, waterfall vs. agile)

• The ratio of the test execution methods (e.g., manual vs.

automated), etc.

Do you agree? If you don’t have enough time or money, then you will

not design the tests. If there is no testing experience, then no design is

needed, because “it doesn’t matter anyway.” Does everyone mean the

same thing when they use the terms “coverage” and “confidence level”? If

you are agile, you don’t need to spend time designing tests anymore. Is it

not necessary to design, maintain, and then redesign automated tests?

Chapter 1 Software teSting BaSiCS

8

We rather believe that good test design involves three prerequisites:

 1. Complete specification (clear and managed

test bases)

 2. Risk and complexity analysis

 3. Historical data of your previous developments

Some explanation is needed. A complete specification unfortunately

doesn’t mean error-free specification and during test design, lots of

problems can be found and fixed (defect prevention). It only means that

we have all the necessary requirements, or in agile development, we have

all the epics, themes, and user stories with acceptance criteria.

We have that there is an optimum value to be gained if we consider

the testing costs and the defect correcting costs together (see Figure 1-2),

and the goal of good test design is to select appropriate testing techniques

that will approach this optimum. This can be achieved by complexity and

risk analysis and using historical data. Thus, risk analysis is inevitable

to define the thoroughness of testing. The more risk the usage of the

function/object has, the more thorough the testing that is needed. The

same can be said for code complexity. For more risky or complex code,

we should first apply more linear test design techniques instead of a

single combinatorial one.

Our (we think proper) view on test design is that if you have the

appropriate specification (test basis) and reliable risk and complexity

analysis, then knowing the historical data, you can optimally perform

test design. At the beginning of your project, you have no historical data,

and you will probably not reach the optimum. It is no problem, make

an initial assessment. For example, if the risk and complexity are low,

then use only exploratory testing. If they are a little bit higher, then use

exploratory testing and simple specification-based techniques such

as equivalence partitioning with boundary value analysis. If the risk is

Chapter 1 Software teSting BaSiCS

9

high, you can use exploratory testing, combinative testing, state-based

testing, defect prevention, static analysis, and reviews. We note, however,

that regardless of the applied development processes or automation

strategies, for given requirements, you should design the same tests.

This remains valid even for exploratory testing as you can apply it in

arbitrary models.

Have you ever thought about why test design is possible at all? Every

tester knows that lots of bugs can be found by applying appropriate test

design techniques though the number of test cases is negligible compared

to all the possible test cases. The reason is the Coupling Effect hypotheses.

This hypothesis states that a test set that can detect the presence of

single faults in the implementation is also likely to detect the presence of

multiple faults. Thus, we only have to test the application to separate it

from the alternative specifications which are very close to the one being

implemented (see section “Fault-Based Testing”).

 Classification of Bugs
Software faults can be classified into various categories based on their

nature and characteristics.

Almost 50 years ago, Howden (1976) published his famous paper

“Reliability of the path analysis testing strategy.” He showed that

“there is no procedure which, given an arbitrary program P and output

specification, will produce a nonempty finite test set T, subset of the input

domain D, such that if P is correct on T, then P is correct on all of D. The

reason behind this result is that the nonexistent procedure is expected to

work for all programs, and thus, the familiar noncomputability limitations

are encountered.” What does it mean? In simpler terms, the sad reality is

Chapter 1 Software teSting BaSiCS

https://cseweb.ucsd.edu/~howden/MyPapers/Reliability of the Path Analysis.pdf

10

that, apart from exhaustive testing, there is no universal method to create a

reliable test set that guarantees finding all bugs for all programs. Therefore,

it is impossible to definitively state that all bugs have been discovered after

testing. However, this does not mean that testing should be neglected as

it is still possible to find most of the bugs. Howden introduced a simple

software fault classification scheme. According to his classification, three

types of faults exist:

• Computation fault: This type of fault relates to errors

or faults in calculations or computations performed

by the implementation. It encompasses issues such as

incorrect arithmetic operations, mathematical errors,

or flaws in algorithmic implementations.

• Domain fault: Domain faults involve faults in the

control flow or logic of the implementation such as

problems with loops, conditionals, or branching,

resulting in incorrect control flow, unintended

behavior, or faulty decision-making.

• Subcase fault: Subcase faults refer to situations where

something is missing or not properly implemented

within the software. This can include missing or

incomplete functionality, unhandled edge cases, or

gaps in the implementation that lead to incorrect or

unexpected behavior.

However, this classification is based on the implemented code, but

when we design test cases, we do not have any code. Thus, we should start

from the functional specification/requirements. The requirements should

consist of two main elements:

 1. What the system should do.

 2. In which conditions the systems should do that.

Chapter 1 Software teSting BaSiCS

11

The system’s computation represents what it should do, while

the conditions under which the computation occurs fall within the

domain of the given computation. Both components are susceptible to

implementation errors. Therefore, when considering requirements, we

encounter two types of errors:

 1. Domain error

 2. Computation error

The only distinction concerning Howden’s classification is that the

subcase error is nonexistent from the specification’s perspective since

the specification should encompass everything to be implemented. If

something is missing, it is not a subcase error but rather a requirement for

incompleteness, which can be addressed using defect prevention methods

as discussed in the section “Pesticides Against Bugs.” A comprehensive

specification includes all the conditions the system should fulfill, resulting

in test cases for each specific domain. These test cases thoroughly examine

potential subcase errors. If a predicate is missing or not implemented, the

related test case follows a different path, leading to a faulty computation,

which is then manifested as a computation error (excluding coincidental

correctness, as discussed in the next paragraph). Therefore, we can

consider this situation as a computation error as well.

Therefore, we are left with only these two types of errors, and based

on them, we can enhance our test design. In this book, we introduce one
test design technique for computation errors and another for domain
errors. Our technique for detecting domain errors is weak-reliable,

meaning that the input value used to identify the error is “one dimension

higher” than the one where the bug remains hidden. The reason for this

is that even if the code follows an incorrect control flow, the computation

may still yield the same result for certain inputs. This phenomenon

is known as coincidental correctness. For instance, if the correct path

involves the computation y = y * x and the incorrect path has y = y + x,

Chapter 1 Software teSting BaSiCS

12

when both y and x are equal to 2, the result will be 4 for both paths. Our

technique for finding the computation errors is not (weak) reliable;

however, in practice, it can find most of the bugs.

 Software Testing
 Testing Life Cycle
This subsection is a review. If you are an experienced software tester, you

can skip it, except “Test Analysis”. If you are a developer, we suggest reading

it to get acquainted with the viewpoints and tasks of a tester.

You cannot design your tests if you don’t understand the whole test

process. We mentioned that the selected test design techniques strongly

depend on the results of the risk analysis. Similarly, test creation at the

implementation phase is an extension of the test design. Figure 1-1 shows

the relevant entities of the traditional testing life cycle including the test

design activities.

Chapter 1 Software teSting BaSiCS

