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Preface 

This small book is a streamlined exposition of the notions and results leading to 
the construction of normal forms and, ultimately, to the construction of smooth 
conjugacies for the perturbations of tempered exponential dichotomies. These are 
exponential dichotomies for which the exponential growth rates of the underlying 
linear dynamics never vanish. In other words, its Lyapunov exponents are all 
nonzero. We consider mostly difference equations, although we also briefly consider 
the case of differential equations. 

The main components of the exposition are tempered spectra, normal forms, 
and smooth conjugacies. The first two lie at the core of the theory and have an 
importance that undoubtedly surpasses the construction of conjugacies. Indeed, the 
theory is very rich and developed in various directions that are also of interest 
by themselves. This includes the study of dynamics with discrete and continuous 
time, of dynamics in finite and infinite-dimensional spaces, as well as of dynamics 
depending on a parameter. This led us to make an exposition not only of tempered 
spectra and subsequently of normal forms, but also briefly of some important 
developments in those other directions. Afterward, we continue the presentation 
with the construction of stable and unstable invariant manifolds and, consequently, 
of smooth conjugacies, while using most of the former material. 

The text can be naturally divided into three parts. The first part (Chapters 1, 2, 
and 3, with emphasis on the basic theory) is dedicated to the tempered spectrum 
and the construction of normal forms. In Chapter 1, we introduce the notion of 
(tempered) spectrum in terms of the notion of tempered exponential dichotomy. 
The chapter also includes a description of all possible forms of the spectrum and 
detailed examples of all of them. We continue in Chapter 2 with the description of 
the Lyapunov exponents, which always belong to some connected component of 
the spectrum. We also consider exponentially decaying perturbations and show that 
again the Lyapunov exponents of the nonlinear dynamics belong to some connected 
component. Finally, in Chapter 3, starting with a block-diagonal preparation of the 
linear part, we construct normal forms for the tempered perturbations of a linear 
dynamics using an appropriate nonautonomous notion of resonance.

v
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The second part (Chapters 4, 5, and 6, with emphasis on further developments) is 
dedicated to the discussion of some additional topics related to tempered spectra and 
normal forms. Although strictly speaking the material is not necessary for the third 
part, these developments are important by themselves and the presentation would 
be quite poorer without them. In Chapter 4, we consider dynamics depending on 
a parameter. In particular, we describe how the tempered spectrum may vary with 
a parameter-dependent linear perturbation, and we establish the regularity of the 
normal forms when the perturbation depends smoothly on the parameter. Chapter 5 
is a brief presentation of the notions and results in the former chapters for differential 
equations. In Chapter 6, we consider the infinite-dimensional setting with the study 
of linear and nonlinear dynamics defined by sequences of compact linear operators 
and their perturbations. The study of perturbations depending on a parameter is 
of utmost importance and is the main theme for example of bifurcation theory. 
Normal forms play a crucial role in the study of bifurcations since they reduce the 
nonlinear part of the dynamics to the simplest possible form. Besides difference and 
differential equations, it is also important to consider infinite-dimensional systems 
both for discrete and continuous time. This includes partial differential equations 
and functional differential equations, although these topics clearly fall out of the 
scope of our book. For details we refer instead to the notes at the end of each chapter. 

Finally, the third part (Chapters 7 and 8, with emphasis on smooth lineariza-
tion) is dedicated to the construction of smooth conjugacies between a tempered 
exponential dichotomy and its tempered perturbations in the absence of resonances. 
This requires a detailed preparation in Chapter 7 with the construction of stable 
and unstable invariant manifolds together with crucial bounds. These are used in 
Chapter 8 to make a preparation of the dynamics so that the manifolds become 
the stable and unstable spaces. Finally, also in Chapter 8, we use  the material in  
the former chapters on tempered spectra, formal forms, and invariant manifolds to 
construct smooth conjugacies when there are no resonances, or even when there are 
no resonances up to a given order. 

We note that the notion of tempered spectrum is naturally adapted to the study 
of nonautonomous dynamics. The reason for this is that any autonomous linear 
dynamics with a tempered exponential dichotomy has automatically a uniform 
exponential dichotomy. We emphasize that in strong contrast to what happens with a 
uniform exponential dichotomy, for a tempered exponential dichotomy the stability 
along the stable direction when time goes forward and along the unstable direction 
when time goes backward need not be uniform. In other words, it may depend 
on the initial time. This causes important changes and the need for adaptations of 
the classical theory as well as for new ideas. Most notably, the spectra defined in 
terms of tempered exponential dichotomies and uniform exponential dichotomies 
are distinct in general. More precisely, the tempered spectrum may be smaller, 
which causes that it may lead to less resonances and thus to simpler normal forms 
(an explicit example is given in Chapter 3). Another important aspect is the need 
for Lyapunov norms in the study of exponentially decaying perturbations (see 
Chapter 2) and in the study of parameter-dependent dynamics (see Chapter 4). Other 
characteristics are the need for a spectral gap to obtain the regularity of the normal
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forms on a parameter in Chapter 4 and the need for a careful control of the small 
exponential terms in the construction of invariant manifolds in Chapter 7 and of 
smooth conjugacies in Chapter 8. 

The following diagram is a summary of the relation between the chapters. A solid 
arrow means that there is a strong dependence between the two chapters, while 
a dotted arrow means that there is a dependence but small. The central line of 
the exposition with the discussion of tempered spectra, normal forms, and smooth 
conjugacies is marked in gray. 

Chapter 1Chapter 2 

Chapter 3 Chapter 6 Chapter 7 

Chapter 5 

Chapter 4 

Chapter 8 

The text is self-contained, and all proofs have been simplified or even rewritten 
on purpose for the book so that all is as streamlined as possible. Moreover, all 
chapters are supplemented by detailed notes discussing the origins of the notions and 
results as well as their proofs, together with the discussion of the proper context, also 
with references to precursor results and further developments. The book is aimed at 
researchers and graduate students who wish to have a sufficiently broad view of the 
area, without the discussion of accessory material. It can also be used as a basis for 
graduate courses on spectra, normal forms, and smooth conjugacies. 

Lisbon, Portugal Luís Barreira 
November 2023 Claudia Valls
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Chapter 1 
Spectra and Examples 

In this chapter we introduce the notions of tempered exponential dichotomy and of 
tempered spectrum for a sequence of .d × d matrices that need not be invertible. 
The tempered spectrum can be thought of as a nonautonomous version of the usual 
notion of spectrum for a single matrix. We also describe all possible forms of the 
tempered spectrum and we give explicit examples of all of them. More precisely, 
for each possible form we describe explicitly a sequence of invertible matrices with 
that tempered spectrum. 

1.1 Tempered Spectrum 

We first introduce the notion of tempered exponential dichotomy. Let .(An)n∈Z be 
a sequence of .d × d matrices (not necessarily invertible). For each .m, n ∈ Z with 
.m ≥ n, we define 

. Am,n =
⎧

Am−1 · · ·An if m > n,

Id if m = n.

Definition 1.1 A sequence of .d × d matrices .(An)n∈Z is said to have a tempered 
exponential dichotomy if: 

1. There are projections .Pn : Rd → R
d for .n ∈ Z satisfying 

.AnPn = Pn+1An for each n ∈ Z (1.1) 

such that the map 

.An|kerPn : kerPn → kerPn+1 (1.2) 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Spectra and Examples

is onto and invertible. 
2. There are a constant .λ > 0 and for each .ε > 0 a constant .D = D(ε) > 0 such 

that for each .m, n ∈ Z we have 

.||Am,nPn|| ≤ De−λ(m−n)+ε|n| for m ≥ n (1.3) 

and 

.||Ām,nQn|| ≤ De−λ(n−m)+ε|n| for m ≤ n, (1.4) 

where .Qn = Id − Pn and 

.Ām,n = (
An,m|kerPm

)−1 : kerPn → kerPm for m ≤ n. (1.5) 

Then we shall also say that .(An)n∈Z has a tempered exponential dichotomy with 
constants . λ and D. 

A sequence of positive numbers .(Dn)n∈Z is said to be upper tempered if 

. lim sup
n→±∞

1

|n| logDn ≤ 0.

Note that this happens if and only if given .ε > 0, there is .D = D(ε) > 0 such that 

.Dn ≤ Deε|n| for all n ∈ Z. (1.6) 

Thus, a sequence .(An)n∈Z has a tempered exponential dichotomy if and only if there 
are projections . Pn for .n ∈ Z satisfying (1.1) such that each map in (1.2) is onto and 
invertible, and there are .λ > 0 and an upper tempered sequence .(Dn)n∈Z such that 

. ||Am,nPn|| ≤ Dne
−λ(m−n) for m ≥ n

and 

. ||Ām,nQn|| ≤ Dne
−λ(n−m) for m ≤ n.

We shall also say that .(An)n∈Z has a tempered exponential contraction if it has a 
tempered exponential dichotomy with .Pn = Id for all .n ∈ Z and that .(An)n∈Z has 
a tempered exponential expansion if it has a tempered exponential dichotomy with 
.Pn = 0 for all .n ∈ Z. For any tempered exponential dichotomy, the sets 

. En = Pn(R
d) and Fn = Qn(R

d)

are called, respectively, the stable and unstable spaces at time n. They satisfy
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. R
d = En ⊕ Fn for n ∈ Z

and can be univocally characterized as follows. 

Proposition 1.1 Assume that the sequence of .d × d matrices .(An)n∈Z has a 
tempered exponential dichotomy. For each .n ∈ Z, we have 

. En =
⎧
v ∈ R

d : sup
m≥n

||Am,nv|| < +∞
⎫

and . Fn is the set of all .v ∈ R
d for which there is a bounded sequence .(xm)m≤n in 

. Rd such that 

.xn = v and xm = Am−1xm−1 for m ≤ n. (1.7) 

Proof Take .v ∈ En. By  (1.3) we have 

. sup
m≥n

||Am,nv|| < +∞. (1.8) 

Now assume that .v ∈ R
d satisfies (1.8). It follows from (1.3) that 

. sup
m≥n

||Am,nQnv|| = sup
m≥n

||Am,n(v − Pnv)|| < +∞. (1.9) 

On the other hand, by (1.4), for .m ≥ n we have 

. ||Qnv|| ≤ De−λ(m−n)+ε|m|||Am,nQnv||,

which is equivalent to 

. ||Am,nQnv|| ≥ 1

D
eλ(m−n)−ε|m|||Qnv||.

If .Qnv /= 0, then taking .ε < λ we obtain 

. sup
m≥n

||Am,nQnv|| = +∞,

which contradicts (1.9). Hence, .Qnv = 0 and so .v ∈ En. 
Now we consider a vector .v ∈ Fn and the sequence .xm = Ām,nv for .m ≤ n. Then 

property (1.7) holds and by (1.4) we have .supm≤n||xm|| < +∞. Finally, assume that 
.(xm)m≤n is a sequence with the properties in the proposition. It follows from (1.1) 
and (1.3) that 

.||Pnv|| = ||An,mPmxm|| ≤ De−λ(n−m)+ε|m|||xm||
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for .m ≤ n. Taking .ε < λ and letting .α = supm≤n||xm||, we obtain 

. ||Pnv|| ≤ De−λ(n−m)+ε|m|α → 0

when .m → −∞. Hence, .Pnv = 0 and so .v ∈ Fn.  ⨅  ⨆ 
The notion of tempered spectrum is defined in terms of the notion of tempered 

exponential dichotomy. 

Definition 1.2 The tempered spectrum (or, simply, the spectrum) of a sequence of 
.d × d matrices .A = (An)n∈Z is the set .Σ = Σ (A) of all numbers .a ∈ R such that 
the sequence .(e−aAn)n∈Z does not have a tempered exponential dichotomy. 

We note that the tempered spectrum of a constant sequence of matrices . An = B

for .n ∈ Z is the set of absolute values of the eigenvalues of B. 
Given .a ∈ R and .n ∈ Z, let  

. Ea
n =

⎧
v ∈ R

d : sup
m≥n

(
e−a(m−n)||Am,nv||) < +∞

⎫

and let . Fa
n be the set of all .v ∈ R

d for which there is a sequence .(xm)m≤n in . Rd

satisfying (1.7) such that 

. sup
m≤n

(e−a(m−n)||xm||) < +∞.

Clearly, if .a < b, then 

.Ea
n ⊂ Eb

n and Fb
n ⊂ Fa

n (1.10) 

for .n ∈ Z. Now  take .a ∈ R \ Σ . By Proposition 1.1, 

.R
d = Ea

n ⊕ Fa
n for n ∈ Z (1.11) 

is the splitting into stable and unstable spaces of the tempered exponential 
dichotomy of the sequence .(e−aAn)n∈Z. Because of the invertibility of the maps 
in (1.2), the dimensions .dimFa

n (and so, by (1.11), also the dimensions .dimEa
n) are  

independent of n. We shall denote their common value by .dimFa . 
Finally, the following result describes all possible forms of the tempered 

spectrum for an arbitrary sequence of matrices. For .−∞ ≤ a ≤ b ≤ +∞, let  

. |a, b| = R ∩ [a, b].

More precisely,


