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Preface

In Mathematical Epidemiology, many papers have the following structure:

— A model is proposed.

— Some parameters are given, extracted from the literature.

— Remaining unknown parameters are estimated by fitting the model to some
observed data.

Fitting is done usually by using an optimization algorithm with the use, for example,
of a least square method or a maximum likelihood estimation. To validate the
estimation of parameters, one can use noisy synthetic simulated data obtained from
the model for given values of the parameters, to check that the algorithm is able to
reconstruct from the data the values of these parameters with accuracy.

One objective of this book is to show that this procedure is not always safe
and that an examination of the identifiability of parameters is a prerequisite before
a numerical determination of parameters. We will review different methods to
study identifiability and observability and then consider the problem of numerical
identifiability. Our touchstone will be the most famous, but simple, model in
Mathematical Epidemiology, the SIR model of Kermack and Mckendrick [73]. This
model received renewed attention with the COVID-19 pandemic [106]. Parameter
identifiability analysis addresses the problem of which unknown parameters of an
ODE model can uniquely be recovered from observed data. We will show that, even
for very simple models, identifiability is far from being guaranteed.

The problem of identifiability for epidemiological models is relatively rarely
addressed. For instance, a search in the Mathematical Reviews of the American
Mathematical Society! for 2020 with epid* AND identifiability gives
only 4 papers, while epidem+ AND parameter returns 68 publications. Only
a small subset of the later publications addresses the problem of identifiability.
In particular, the following publications consider the problem of identifiability

! https://mathscinet.ams.org/mathscinet.
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viii Preface

in epidemiological models: [19, 33, 50, 51, 68, 72, 81, 87, 91, 99, 107, 119-
121, 130, 132]. However, the majority of these papers were published elsewhere than
in Biomathematics journals. Note that we make a distinction between publications
that address directly the parameter estimation problem in epidemiological models
(such as in references [13, 20, 21, 27-29, 37, 56, 57, 63, 101, 113, 132] for instance)
and works that study explicitly the identifiability property of models. As explained
in this book, this is an intrinsic property to be studied prior to determination of
parameters values.

The question of observability, i.e. the ability to reconstruct state variables of
the model from measurements, is often considered separately from the problem of
identifiability. Either model parameters are known, or an identifiability analysis is
performed prior to the study of observability. Indeed, the concepts of identifiability
and observability are closely related, as we show in this book. However, for certain
models, it is possible to reconstruct state variables with observers, while the model
is not identifiable. In other situations, we show that considering jointly identifiability
and observability with observers can be a way to solve the identifiability problem.
This is another illustration of the utility of the concept of observers. This is why we
shall dedicate a fair part of this monograph to reviewing the concept of observers
and their practical constructions in epidemiology.

This book is aimed at scientists, researchers and graduate students, who use or
develop mathematical models for epidemiology, and who are not yet familiar with
the concepts of control science (detectability, observability, observers) applied to
this field.

Cambridge, UK Nik Cunniffe
Rennes, France Frédéric Hamelin
Metz, France Abderrahman Iggidr
Montpellier, France Alain Rapaport
Metz, France Gauthier Sallet

May 2023



Acknowledgements

The authors are deeply grateful to P.-A. Bliman, C. Lobry, J. Harmand, A. Kubik,
T. Sari, M. Sofonea, M. Souza and many other colleagues or students, for exchanges
and fruitful discussions that gave them the willingness to write this monograph. The
authors thank the support of the French National Research Agency ANR (NOCIME
project-ANR-23-CE48-0004 and BEEP project ANR-23-CE35-0012).

ix



Contents

1 Introduction ... e 1

L1 Definitions .oovveeieeeiiii it e 1

1.2 Historical NOtes ...oovviiiiiiiiii e 7

1.3 Identifiability in Mathematical Epidemiology ........................ 8

1.4 The Concept Of ODSEIVETS ...vvvveiiieeeieeieiiieiiieiieeeeeeaeaeeannn. 8

2 Mathematical Foundations ..........................................LL 9

2.1 Preliminaries.......oooviiiiiiiiiiiiii e 9

2.2 Observability ......oooiiiiiiiii 10

2.3 About Identifiability ........coviiiiiiiiiii e 20

2.4 Identifiability Does Not Necessarily Require Observability ......... 22

2.5 Identifiability via Decoupled Variables................................ 23

3 Analysis of the Kermack-McKendrick Model ............................ 27

31 HIStOTY coeiiiii i 27

3.2 The Different Forms of the SIR Model................................ 28

3.3 Observability and Identifiability of the SIR Model ................... 28
3.3.1 The SIR Model When Observing a Ratio of the

Infected Population ..............coooiiiiiiiiiiiiiiiiiiiinnn, 29

3.3.2 The SIR Model When Observing the Incidence............... 34

4 Observers Synthesis ... 39

4.1 INrodUCHON .. evvttttt ittt e 39

4.2 Observers with Linear Error Dynamics ..............coooeiinn... 42

4.3 Observers for Systems with Lipschitz Non-linearity ................. 44

4.4 Observers via Decoupled Variables..............coooiiiiia... 48

4.5 Reduced-Order ODSETVETS. .....ovviiiiiitiiiiiiiiiiiiiiiiiitieeeeeennn. 49

4.6  The High-Gain Observer for Nonlinear Systems ..................... 51

4T DISCUSSION vttt ettt eeeeeeeeeeeeeees 56

5 Practical and Numerical Considerations.................................. 59

5.1 Practical Identifiability ... 59

5.1.1 Rationale for Using Sensitivity Analysis ..................... 60

xi



xii

D

Contents

5.1.2 Observed SyStem ........oeeeiiiiiiiie i 60

5.1.3  Sensitivity ANalysis .......coovviuiiiiiiiiiiiiiiiiiiiiiie.. 60

5.1.4 Ordinary Least SQUAres ............cceeeiiiiiiiiiieiiiiinnen... 61

5.1.5 Confidence Intervals ...........ooooiiiiiiiiiiiiiiiiiiie... 62

5.1.6 Computing the Sensitivity MatriX ............cocevviinnee.... 63

5.1.7 Some Case Studies ........covviuiiiiiiiiiiiiiiii e 64

5.1.8  DISCUSSION .. .vvvettiit et 67

5.2 Observers in PractiCe ............oeiiiiiiiiiiiiiiiiiiiii e, 68
5.2.1 Observers with Linear Assignable Error Dynamics .......... 68

5.2.2  About Observers with Lipchitz Non-linearity ................ 70

5.2.3 Observers with Asymptotic Convergence..................... 71

5.2.4 Observers with Partially Assignable Error Dynamics........ 71

5.2.5 High Gain ObServer.........oovvuuieiiiiiiiiiiii e, 73

5.3 A Case Study : An Observer to Estimate State and Parameter ....... 74
Proofs of Some Useful Lemmas ....................ooooiiiiiiiiii 81
A.l Proof of Lemma 4.1 ...ooooii 81
A2 Proofof Lemma 4.2 ....oooiiiii 84
A3 Proof of Theorem 4.1.. ..ot 86
Implementation of the ‘“Boarding School” Example..................... 89
B.1 Derivation of the Fisher’s Information Matrix ........................ 89
B.2 Numerical Implementation....................oooviiiiiiiiiiiiinnnn.. 91
Implementation of the “Plague in Bombay” Example ................... 95
C.1 Derivation of the Fisher Information Matrix .......................... 95
C.2  Numerical Implementation....................ooiiiiiiiiiiii. .. 97
Generalized Least Squares.....................ooooiiiiiiiiiiiiiiii. . 101

RefIenCeS . ... oo 103



