SpringerBriefs on PDEs and Data Science

Nik Cunniffe · Frédéric Hamelin · Abderrahman Iggidr · Alain Rapaport · **Gauthier Sallet**

Identifiability and Observability in Epidemiological Models

A Primer

SpringerBriefs on PDEs and Data Science

Editor-in-Chief

Enrique Zuazua, Department of Mathematics, University of Erlangen-Nuremberg, Erlangen, Bayern, Germany

Series Editors

Irene Fonseca, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Franca Hoffmann, Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany

Shi Jin, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, Shanghai, China

Juan J. Manfredi, Department of Mathematics, University Pittsburgh, Pittsburgh, PA, USA

Emmanuel Trélat, CNRS, Laboratoire Jacques-Louis Lions, Sorbonne University, PARIS CEDEX 05, Paris, France

Xu Zhang, School of Mathematics, Sichuan University, Chengdu, Sichuan, China

SpringerBriefs on PDEs and Data Science targets contributions that will impact the understanding of partial differential equations (PDEs), and the emerging research of the mathematical treatment of data science.

The series will accept high-quality original research and survey manuscripts covering a broad range of topics including analytical methods for PDEs, numerical and algorithmic developments, control, optimization, calculus of variations, optimal design, data driven modelling, and machine learning. Submissions addressing relevant contemporary applications such as industrial processes, signal and image processing, mathematical biology, materials science, and computer vision will also be considered.

The series is the continuation of a former editorial cooperation with BCAM, which resulted in the publication of 28 titles as listed here: https://www.springer.com/gp/mathematics/bcam-springerbriefs

Nik Cunniffe • Frédéric Hamelin • Abderrahman Iggidr • Alain Rapaport • Gauthier Sallet

Identifiability and Observability in Epidemiological Models

A Primer

Nik Cunniffe Department of Plant Sciences University of Cambridge Cambridge, UK

Abderrahman Iggidr Institut Élie Cartan de Lorraine INRIA Metz, France

Gauthier Sallet University of Lorraine Metz. France Frédéric Hamelin Department of Ecology Institut Agro Rennes, France

Alain Rapaport MISTEA INRAE Montpellier, France

ISSN 2731-7595 ISSN 2731-7609 (electronic) SpringerBriefs on PDEs and Data Science ISBN 978-981-97-2538-0 ISBN 978-981-97-2539-7 (eBook) https://doi.org/10.1007/978-981-97-2539-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

The World requires at least ten years to understand a new idea, however important or simple it may be. Ronald Ross (1902 Nobel Prize)

Preface

In Mathematical Epidemiology, many papers have the following structure:

- A model is proposed.
- Some parameters are given, extracted from the literature.
- Remaining unknown parameters are estimated by fitting the model to some observed data.

Fitting is done usually by using an optimization algorithm with the use, for example, of a least square method or a maximum likelihood estimation. To validate the estimation of parameters, one can use noisy synthetic simulated data obtained from the model for given values of the parameters, to check that the algorithm is able to reconstruct from the data the values of these parameters with accuracy.

One objective of this book is to show that this procedure is not always safe and that an examination of the identifiability of parameters is a prerequisite before a numerical determination of parameters. We will review different methods to study identifiability and observability and then consider the problem of numerical identifiability. Our touchstone will be the most famous, but simple, model in Mathematical Epidemiology, the SIR model of Kermack and Mckendrick [73]. This model received renewed attention with the COVID-19 pandemic [106]. Parameter identifiability analysis addresses the problem of which unknown parameters of an ODE model can uniquely be recovered from observed data. We will show that, even for very simple models, identifiability is far from being guaranteed.

The problem of identifiability for epidemiological models is relatively rarely addressed. For instance, a search in the Mathematical Reviews of the American Mathematical Society¹ for 2020 with epid* AND identifiability gives only 4 papers, while epidem* AND parameter returns 68 publications. Only a small subset of the later publications addresses the problem of identifiability. In particular, the following publications consider the problem of identifiability

¹ https://mathscinet.ams.org/mathscinet.

viii Preface

in epidemiological models: [19, 33, 50, 51, 68, 72, 81, 87, 91, 99, 107, 119–121, 130, 132]. However, the majority of these papers were published elsewhere than in Biomathematics journals. Note that we make a distinction between publications that address directly the parameter estimation problem in epidemiological models (such as in references [13, 20, 21, 27–29, 37, 56, 57, 63, 101, 113, 132] for instance) and works that study explicitly the identifiability property of models. As explained in this book, this is an intrinsic property to be studied prior to determination of parameters values.

The question of observability, i.e. the ability to reconstruct state variables of the model from measurements, is often considered separately from the problem of identifiability. Either model parameters are known, or an identifiability analysis is performed prior to the study of observability. Indeed, the concepts of identifiability and observability are closely related, as we show in this book. However, for certain models, it is possible to reconstruct state variables with observers, while the model is not identifiable. In other situations, we show that considering jointly identifiability and observability with observers can be a way to solve the identifiability problem. This is another illustration of the utility of the concept of observers. This is why we shall dedicate a fair part of this monograph to reviewing the concept of observers and their practical constructions in epidemiology.

This book is aimed at scientists, researchers and graduate students, who use or develop mathematical models for epidemiology, and who are not yet familiar with the concepts of control science (detectability, observability, observers) applied to this field.

Cambridge, UK Rennes, France Metz, France Montpellier, France Metz, France May 2023 Nik Cunniffe Frédéric Hamelin Abderrahman Iggidr Alain Rapaport Gauthier Sallet

Acknowledgements

The authors are deeply grateful to P.-A. Bliman, C. Lobry, J. Harmand, A. Kubik, T. Sari, M. Sofonea, M. Souza and many other colleagues or students, for exchanges and fruitful discussions that gave them the willingness to write this monograph. The authors thank the support of the French National Research Agency ANR (NOCIME project-ANR-23-CE48-0004 and BEEP project ANR-23-CE35-0012).

Contents

1	Introduction					
	1.1	Definitions				
	1.2	Historical Notes	1			
	1.3	Identifiability in Mathematical Epidemiology				
	1.4	The Concept of Observers				
2	Mathematical Foundations					
	2.1	Preliminaries	9			
	2.2	Observability	10			
	2.3	About Identifiability	20			
	2.4	Identifiability Does Not Necessarily Require Observability	22			
	2.5	Identifiability via Decoupled Variables	23			
3	Analysis of the Kermack-McKendrick Model					
	3.1	History	2			
	3.2	The Different Forms of the SIR Model	28			
	3.3	Observability and Identifiability of the SIR Model	28			
		3.3.1 The SIR Model When Observing a Ratio of the				
		Infected Population	29			
		3.3.2 The SIR Model When Observing the Incidence	34			
4	Observers Synthesis					
	4.1	Introduction	39			
	4.2	Observers with Linear Error Dynamics	42			
	4.3	Observers for Systems with Lipschitz Non-linearity	44			
	4.4	Observers via Decoupled Variables	48			
	4.5	Reduced-Order Observers	49			
	4.6	The High-Gain Observer for Nonlinear Systems	5			
	4.7	Discussion	50			
5	Practical and Numerical Considerations					
	5.1	Practical Identifiability	59			
		5.1.1 Rationale for Using Sensitivity Analysis	60			

xii Contents

		5.1.2	Observed System	60			
		5.1.3	Sensitivity Analysis	60			
		5.1.4	Ordinary Least Squares	61			
		5.1.5	Confidence Intervals	62			
		5.1.6	Computing the Sensitivity Matrix	63			
		5.1.7	Some Case Studies	64			
		5.1.8	Discussion	67			
	5.2	.2 Observers in Practice					
		5.2.1	Observers with Linear Assignable Error Dynamics	68			
		5.2.2	About Observers with Lipchitz Non-linearity	70			
		5.2.3	Observers with Asymptotic Convergence	71			
		5.2.4	Observers with Partially Assignable Error Dynamics	71			
		5.2.5	High Gain Observer	73			
	5.3	A Cas	e Study: An Observer to Estimate State and Parameter	74			
A	Proofs of Some Useful Lemmas						
	A .1	Proof	of Lemma 4.1	81			
	A.2	Proof	of Lemma 4.2	84			
	A.3	Proof	of Theorem 4.1.	86			
				89			
B	1						
	B.1		ation of the Fisher's Information Matrix	89			
	B.2	Nume	rical Implementation	91			
C	Implementation of the "Plague in Bombay" Example						
	C.1	Deriva	ation of the Fisher Information Matrix	95			
	C.2	Nume	rical Implementation	97			
D	Generalized Least Squares						
Re	References 10						