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Preface

At present approximately 80% of our energy worldwide comes from the combustion of
fossil fuels. This approach to energy is not sustainable because of the limited fossil fuel
resources available. As well, the need to change to non-fossil fuel energy sources is accen-
tuated by the adverse environmental effects of continued fossil fuel use. Most notable of
the environmental consequences of fossil fuel use is global climate change. Although the
transition to renewable carbon-free energy sources is essential, it is not easy. A significant
aspect of the use of renewable energy sources is the need for energy storage. Most renew-
able energy sources are neither constant in time, nor are they readily portable. These two
features are a requirement for much of our energy use. Specifically, a reliable supply of
heat and electricity is needed for residential, as well as commercial and industrial needs,
and a portable source of energy is essential for most transportation applications.

The present book considers some of the important technologies for energy storage that
utilize mechanical methods and thermal methods to store energy. Chapter 1 considers
pumped hydroelectric energy storage and Chap. 2 considers compressed air energy stor-
age. The use of gravitational potential of solid masses and flywheels to store energy is
presented in Chap. 3. Chapter 4 reviews the use of sensible heat to store thermal energy.
These concepts are expanded upon in Chap. 5, where solar ponds, which act as both solar
collectors and thermal energy storage devices, are considered. Finally, Chap. 6 discusses
the use of the latent heat of materials as an energy storage mechanism.

Halifax, Canada Richard A. Dunlap
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Pumped Hydroelectric Energy Storage

1.1 Introduction

Mechanical energy storage methods include several diverse techniques. These are used
primarily for the grid-scale storage of electrical energy but applications to transportation
have also been considered. The most common grid storage technology is pumped hydro-
electric storage. Here electricity is used to pump water to a higher gravitational potential
in order to store energy. This energy can be recovered by allowing the water to run back
to a lower elevation through a turbine. The present chapter reviews the physics of pumped
hydroelectric energy storage and discusses the development and growth of this technology.

1.2 Conventional Pumped Hydroelectric Storage

In a conventional pumped hydroelectric storage facility, water flows between an upper
reservoir and a lower water supply (reservoir, river, lake or ocean) where the upper reser-
voir is supplied only by water pumped from the lower reservoir. The reservoirs may be
natural or artificial. The most common configuration uses an artificial upper reservoir and
a natural water source (e.g., river) as the lower reservoir. If the lower reservoir is con-
nected to a natural water source, then the system is referred to as an open-loop system. If
neither reservoir has a source of water other than that which is cycled through the pumps/
turbines, then the system is referred to as a closed-loop system. These types of systems
are illustrated in Fig. 1.1.

Overall storage efficiency is limited by the motor/pump efficiency, turbine/generator
efficiency and water loss in the upper reservoir due to evaporation. Net efficiencies are
typically in the 70-80% range (compared to conventional hydroelectric generating facil-
ities which operate in the 85-90% efficiency range). Since the storage and recovery of
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OPEN LOOP PUMPED-STORAGE HYDROPOWER CLOSED LOOP PUMPED-STORAGE HYDROPOWER
Projects that are continuously connected to a naturally flowing water feature Projects that are not continuously connected to a naturally flowing water feature

Penstock/Tunnel —e “‘» .
Powerhouse ———S/

Generator/Motor ———————- "¢

g
Turbine /Pump

Fig. 1.1 Differences between open-loop (left) and closed-loop (right) pumped hydroelectric storage
systems. U. S. Department of Energy (ND) Public domain

electrical energy requires both pumping (to store the energy) and generation (to recover
the energy) the overall efficiency is the result of these combined processes.

Pumped hydroelectric storage is a commonly used method of topping up grid electricity
during times of higher demand. It is a common method of load leveling or peak shaving,
that is storing energy during periods of low demand and recovering this energy during
periods of high demand (see Dunlap 2025). Pumped hydroelectric storage is used to store
electricity which has been generated by any method, not just hydroelectricity or other
renewable methods. It is a convenient means of grid storage as facilities have substantial
generating capacity (power), as well as considerable total energy storage capacity. In
addition, this power can be brought on-line quickly to satisfy demand.

The typical design of a pumped hydroelectric facility is illustrated in Fig. 1.2. Water
is pumped from the lower reservoir through a penstock to the upper reservoir using the
motor/pump in order to store energy. Electrical energy is recovered when water from
the upper reservoir flows through the penstock to the turbine/generator near the lower
reservoir. If the average head between the upper reservoir and the generator is A, then the
total energy available from the gravitational potential of the water in the upper reservoir
is

E = mgh = pghV. (1.1)
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Long distance transmission lines

Powerhouse

Fig.1.2 Diagram of a typical pumped hydroelectric storage facility. Figure 4 from Luo et al. (2015)
Copyright (2015) the Authors. CC BY 3.0. https://creativecommons.org/licenses/by/3.0/

Here m is the total mass of water in the upper reservoir, g is the gravitational accel-
eration, p is the density of the water (kg/m®) and V is the total volume of the upper
reservoir (m?). When £ is in meters then the energy is in Joules. Including the net system
efficiency, #, this may be written as

E = npghV. (1.2)

The power generated by the turbine, in Watts, is

dE dv
P=—=npgh— = npgho, 1.3
7 = Psh—- = npghy (1.3)

where ¢ is the flow rate in m3/s. If the total penstock cross sectional area is A, in m?,

then the flow rate is given in terms of the water velocity in the penstock, v, as
@ = VA. (1.4)
Thus, Eq. (1.3) may be written as
P = npghvA. (1.5)

The above equations can also be used to estimate the total time, ¢, the facility can
provide maximum power. Since P = E/t then t = E/P or from Egs. (1.2) and (1.5),

t=— (1.6)
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