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Preface |

The art of machine learning (ML) is to optimally combine inductive bias (a.k.a. priors)
with data. With more data, we need to include less prior information and we can let the
data speak. This is the modern “scaling” paradigm of LLMs and Foundation models with
trillions of parameters, trained on hundreds of thousands of GPUs on the entirety of the
internet. For these models, the architecture of choice are usually Transformers, precisely
because they scale well.

Are Transformers the final answer? That seems unlikely. In this book, we ask ourselves
if there are architectures based on better priors about the world but that also scale to
internet-level models. These models will not only be able to learn from fewer data but
also exhibit improved scaling laws, ideally with a steeper slope.

What are some interesting priors to build into deep architectures? In this book, we
are inspired by both neuroscience and physics. Neuroscience has been ML’s companion
right from the start. Early architectures such as Rosenblatt’s Perceptron were already
inspired by biological neurons. It’s only more recently that the two fields have gone
their own separate ways. But given the huge gap in energy efficiency between artificial
and biological neural networks, it may make sense to look at neuroscience again for
inspiration.

In this book, we explore the possibility to use oscillators and traveling waves as a
new computing paradigm, rather than static representations. Waves have the potential to
collect and combine information from long distances, both on space and in time.

Another interesting prior is that in the world around us at the scale that we understand
it (objects), things usually don’t change very fast. This is of course different than the
nanosecond fluctuation at the level of individual atoms. As deep models build coarse-
grained representations in their deeper levels, it seems reasonable to enforce this slowness
at the level of abstract (deep) representations.

Since our models often model things in our physical world, we can also contemplate
whether the symmetries of that physical world should be represented in our representa-
tions. There is now a rich literature on symmetries, such as translational and rotational
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symmetries that are exactly enforced through (irreducible or regular) equivariant group
representations. However, often we do not know the symmetries present in the data, or
some regularities might not be described by groups, or we may not simply know the
representations of certain groups. In all these cases we need to generalize the concept of
equivariance, on which these hard-coded symmetries are based.

In this book, we consider homomorphisms between latent representations and the world
as an appropriate signal to learn such approximate symmetries. That is to say, the dynam-
ics of the latent representations should mirror the corresponding dynamics of the world.
What dynamics, or set of transformation of our latent code, do we entertain when we try
to learn homomorphisms between the world and our deep representations? Here we are
inspired again by neuroscience and physics: we have modeled these representations as
collections of interacting oscillators, or in the continuum limit, PDEs, that support wave-
like solutions. In some sense, we can think of these representations as a fluid in which
waves can develop to perform computations.

And this brings me to my final point. Due to availability of multi-electrode sensors,
waves are now commonly detected in the brain, and neuroscience researchers are starting
to ask what its computational benefits might be. Can waves transport and combine infor-
mation in new ways that we have not yet discovered? This is an intriguing possibility
about which I have no doubt we will hear a lot more over the course of the next decade.

I wish you an interesting journey as you travel through the chapters of this book and
become inspired to think of new ways to build inductive biases into the next generation
of ML models.

Amsterdam, The Netherlands Max Welling
February 2025
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The field of machine learning stands at a critical juncture. While recent advances in deep
learning have delivered remarkable breakthroughs across domains such as vision, lan-
guage, and robotics, these successes often come at the cost of massive data requirements,
computational inefficiency, a lack of interpretability, and poor generalization to novel sce-
narios. As machine learning systems are increasingly deployed in real-world applications,
these challenges highlight the need for models that go beyond brute force learning and
instead can learn more like humans—adaptively, efficiently, and intuitively.

This book, Structured Representation Learning: From Homomorphisms and Disentan-
glement to Equivariance and Topography, offers a timely exploration of how structured
approaches can reshape the design and performance of machine learning systems. By
embedding principles such as symmetry, topography, and compositionality directly into
model architectures, structured representation learning provides a pathway to models that
are more robust, efficient, and capable of generalization.

At its core, structured representation learning seeks to address fundamental questions:
How can machine learning systems capture the inherent relationships within data, such
as symmetries and invariances? How can models decompose complex phenomena into
simpler, interpretable components? And how can we align computational representations
with the physical and biological principles that govern the real world? This book explores
these questions through key concepts such as:

e Equivariance and Symmetry: Learning approximately equivariant representations that
respect the transformations of the data beyond group theory.

¢ Disentanglement: Designing latent representations that isolate meaningful factors of
variation, serving as approximate learned equivariance.

e Topographic Representations: Drawing inspiration from biological systems to orga-
nize information spatially and temporally in ways that mimic biological neural
networks.

Vii
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e Physical Priors: Baking physical principles into machine learning systems to represent
the physical relations in the real world.

Structured representation learning represents a paradigm shift. By incorporating the above
beneficial inductive biases directly into learning systems, this approach opens the door to
machine learning systems that are not only more efficient but also more interpretable and
aligned with the complexities of the real world.

This book is written for researchers, practitioners, and students eager to explore the
intersection of machine learning, computational neuroscience, and natural sciences. It
provides a high-level perspective on the field’s foundational ideas while delving into spe-
cific techniques and applications that demonstrate the power of structured representation
learning. As the demands on machine learning systems continue to grow, structured repre-
sentations offer a promising direction toward building models that can reason, adapt, and
learn with greater data efficiency and generalization abilities. We invite readers to engage
with the ideas in this book, explore the rich potential of structured representations, and
join in shaping the future of machine intelligence.

Pasadena, CA, USA Yue Song
Cambridge, MA, USA Thomas Anderson Keller
November 2024
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